103 research outputs found
An Efficient and Epimerization Free Synthesis of C-Terminal Arylamides Derived from α-Amino Acids and Peptide Acids via T3P Activation
Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the
quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with
transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured
by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is
observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates
jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for
low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p
collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured
for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as
well as medium-response effects
Systematic study of nuclear effects in p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV using π 0 production
The PHENIX collaboration presents a systematic study of inclusive π
0 production from p+p,
p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV. Measurements were performed
with different centrality selections as well as the total inelastic, 0%–100%, selection for all collision
systems. For 0%–100% collisions, the nuclear-modification factors, RxA, are consistent with unity
for pT above 8 GeV/c, but exhibit an enhancement in peripheral collisions and a suppression in
central collisions. The enhancement and suppression characteristics are similar for all systems for
the same centrality class. It is shown that for high-pT -π
0 production, the nucleons in the d and
3He interact mostly independently with the Au nucleus and that the counter intuitive centrality
dependence is likely due to a physical correlation between multiplicity and the presence of a hard
scattering process. These observations disfavor models where parton energy loss has a significant
contribution to nuclear modifications in small systems. Nuclear modifications at lower pT resemble
the Cronin effect – an increase followed by a peak in central or inelastic collisions and a plateau in
peripheral collisions. The peak height has a characteristic ordering by system size as p+Au > d+Au
>
3He+Au > p+Al. For collisions with Au ions, current calculations based on initial state cold
nuclear matter effects result in the opposite order, suggesting the presence of other contributions to
nuclear modifications, in particular at lower pT
Development and Pilot Operation of a Three-Phase Fully Optical Measuring Voltage Transformer of 220 kV with Digital Output
The clinical outcomes of surgical management of anterior chamber migration of a dexamethasone implant (Ozurdex®)
Experimental Investigation of an Adaptively Tuned Dynamic Absorber Incorporating Magnetorheological Elastomer with Self-Sensing Property
- …
