112 research outputs found
Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation.
Combining vitamin C and carotenoid biomarkers better predicts fruit and vegetable intake than individual biomarkers in dietary intervention studies.
The aim of this study was to determine whether combining potential biomarkers of fruit and vegetables is better at predicting FV intake within FV intervention studies than single biomarkers
Recommended from our members
Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota
Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12g and 18g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention
Dietary advanced glycation endproducts in the mechanisms linking proteins glycosylation pattern, microbiota, and metabolic inflammation
Microbial and metabolic characterization of organic artisanal sauerkraut fermentation and study of gut health-promoting properties of sauerkraut brine
Sauerkraut is a traditionally fermented cabbage, and recent evidence suggests that it has beneficial properties for human health. In this work, a multi-disciplinary approach was employed to characterize the fermentation process and gut health-promoting properties of locally produced, organic sauerkraut from two distinct producers, SK1 and SK2. 16S rRNA metataxonomics showed that bacterial diversity gradually decreased as fermentation progressed. Differences in sauerkraut microbiota composition were observed between the two producers, especially at the start of fermentation. Lactic acid bacteria (LAB) dominated the microbiota after 35 days, with Lactiplantibacillus being the dominant genus in both sauerkraut products, together with Leuconostoc and Paucilactobacillus in SK1, and with Pediococcus, Levilactibacillus, and Leuconostoc in SK2. LAB reached between 7 and 8 Log CFU/mL brine at the end of fermentation (35 days), while pH lowering happened within the first week of fermentation. A total of 220 LAB strains, corresponding to 133 RAPD-PCR biotypes, were successfully isolated. Lactiplantibacillus plantarum and Lactiplantibacillus pentosus accounted for 67% of all SK1 isolates, and Lactiplantibacillus plantarum/paraplantarum and Leuconostoc mesenteroides represented 72% of all the isolates from SK2. 1H-NMR analysis revealed significant changes in microbial metabolite profiles during the fermentation process, with lactic and acetic acids, as well as amino acids, amines, and uracil, being the dominant metabolites quantified. Sauerkraut brine did not affect trans-epithelial electrical resistance through a Caco-2 cell monolayer as a measure of gut barrier function. However, significant modulation of inflammatory response after LPS stimulation was observed in PBMCs-Caco-2 co-culture. Sauerkraut brine supported a robust inflammatory response to endotoxin, by increasing TNF-α and IL-6 production while also stimulating the anti-inflammatory IL-10, therefore suggesting positive resolution of inflammation after 24 h and supporting the potential of sauerkraut brine to regulate intestinal immune function
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers
<p>Abstract</p> <p>Background</p> <p>Short-chain fructo-oligosaccharides (scFOS) are increasingly used in human diet for their prebiotic properties. We aimed at investigating the effects of scFOS ingestion on the colonic microflora and oro-fecal transit time in elderly healthy humans.</p> <p>Methods</p> <p>Stools composition, oro-fecal transit time, and clinical tolerance were evaluated in 12 healthy volunteers, aged 69 ± 2 yrs, in three consecutive periods: basal period (2 weeks), scFOS (Actilight<sup>®</sup>) ingestion period (8 g/d for 4 weeks) and follow-up period (4 weeks). Two-way ANOVA, with time and treatment as factors, was used to compare the main outcome measures between the three periods.</p> <p>Results</p> <p>Fecal bifidobacteria counts were significantly increased during the scFOS period (9.17 ± 0.17 log cfu/g vs 8.52 ± 0.26 log cfu/g during the basal period) and returned to their initial values at the end of follow-up (8.37 ± 0.21 log cfu/g; P < 0.05). Fecal cholesterol concentration increased during the scFOS period (8.18 ± 2.37 mg/g dry matter vs 2.81 ± 0.94 mg/g dry matter during the basal period) and returned to the baseline value at the end of follow-up (2.87 ± 0.44 mg/g dry matter; P < 0.05). Fecal pH tended to decrease during scFOS ingestion and follow-up periods compared to the basal period (P = 0.06). Fecal bile acids, stool weight, water percentage, and oro-fecal transit time did not change throughout the study. Excess flatus and bloating were significantly more frequent during scFOS ingestion when compared to the basal period (P < 0.05), but the intensity of these symptoms was very mild.</p> <p>Conclusion</p> <p>Four-week 8 g/d scFOS ingestion is well tolerated and leads to a significant increase in fecal bifidobacteria in healthy elderly subjects. Whether the change in cholesterol metabolism found in our study could exert a beneficial action warrants further studies.</p
Randomized clinical study: Partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome
The Impact of Having a Baby on the Level and Content of Women’s Well-Being
The primary objective of this study was to more fully understand the impact of having a baby on women’s well-being by attending to both the level and the content of well-being. To cover the judgemental and affective aspects of well-being we included global measures of life satisfaction and well-being and affective experience measures derived from the day reconstruction method. In a sample of 19 first-time mothers no differences between pre and postnatal reports of general life satisfaction, depression, anxiety, and experienced positive and negative affect were found, suggesting that the arrival of the newborn baby does not universally impact on women’s level of well-being. Changes in the content of well-being were studied by examining changes in the way women experience specific activities and interactions with various social partners. There appeared to be an upward shift in experienced positive affect during active leisure and a slight decrease in negative affect during time spent with relatives. The results are discussed in light of previously documented changes across the transition to motherhood in negative mood states, time use, women’s evaluation of various aspects of daily life, and relational satisfaction
Immunoregulatory Mechanisms Underlying Prevention of Colitis-Associated Colorectal Cancer by Probiotic Bacteria
Background: Inflammatory bowel disease (IBD) increases the risk of colorectal cancer. Probiotic bacteria produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anticarcinogenic effects. This study aimed to investigate the cellular and molecular mechanisms underlying the efficacy of probiotic bacteria in mouse models of cancer. Methodology/Principal Findings: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in mouse models of inflammation-driven colorectal cancer. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen and colonic lamina propria lymphocytes (LPL) were phenotypically and functionally characterized. Mice treated with CLA or VSL#3 recovered faster from the acute inflammatory phase of disease and had lower disease severity in the chronic, tumor-bearing phase of disease. Adenoma and adenocarcinoma formation was also diminished by both treatments. VSL#3 increased the mRNA expression of TNF-a, angiostatin and PPAR c whereas CLA decreased COX-2 levels. Moreover, VSL#3-treated mice had increased IL-17 expression in MLN CD4+ T cells and accumulation of Treg LPL and memory CD4+ T cells. Conclusions/Significance: Both CLA and VSL#3 suppressed colon carcinogenesis, although VSL#3 showed greater anticarcinogeni
- …
