28 research outputs found
Early Adverse Events, HPA Activity and Rostral Anterior Cingulate Volume in MDD
Prior studies have independently reported associations between major depressive disorder (MDD), elevated cortisol concentrations, early adverse events and region-specific decreases in grey matter volume, but the relationships among these variables are unclear. In the present study, we sought to evaluate the relationships between grey matter volume, early adverse events and cortisol levels in MDD.Grey matter volume was compared between 19 controls and 19 individuals with MDD using voxel-based morphometry. A history of early adverse events was assessed using the Childhood Trauma Questionnaire. Subjects also provided salivary cortisol samples. Depressed patients showed decreased grey matter volume in the rostral ACC as compared to controls. Rostral ACC volume was inversely correlated with both cortisol and early adverse events.These findings suggest a key relationship between ACC morphology, a history of early adverse events and circulating cortisol in the pathophysiology of MDD
Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder
Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression
Mourning and melancholia revisited: correspondences between principles of Freudian metapsychology and empirical findings in neuropsychiatry
Freud began his career as a neurologist studying the anatomy and physiology of the nervous system, but it was his later work in psychology that would secure his place in history. This paper draws attention to consistencies between physiological processes identified by modern clinical research and psychological processes described by Freud, with a special emphasis on his famous paper on depression entitled 'Mourning and melancholia'. Inspired by neuroimaging findings in depression and deep brain stimulation for treatment resistant depression, some preliminary physiological correlates are proposed for a number of key psychoanalytic processes. Specifically, activation of the subgenual cingulate is discussed in relation to repression and the default mode network is discussed in relation to the ego. If these correlates are found to be reliable, this may have implications for the manner in which psychoanalysis is viewed by the wider psychological and psychiatric communities
Cortisol, cognition and the ageing prefrontal cortex
The structural and functional decline of the ageing human brain varies by brain
region, cognitive function and individual. The underlying biological mechanisms are
poorly understood. One potentially important mechanism is exposure to
glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with
age in humans, and chronic exposure to high levels is hypothesised to result in
cognitive decline via cerebral remodelling. However, studies of GC exposure in
humans are scarce and methodological differences confound cross-study comparison.
Furthermore, there has been little focus on the effects of GCs on the frontal lobes and
key white matter tracts in the ageing brain. This thesis therefore examines
relationships among cortisol levels, structural brain measures and cognitive
performance in 90 healthy, elderly community-dwelling males from the Lothian
Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and
evening) and reactive profiles (before and after a cognitive test battery). Structural
variables comprised Diffusion Tensor Imaging measures of major brain tracts and a
novel manual parcellation method for the frontal lobes. The latter was based on a
systematic review of current manual methods in the context of putative function and
cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and
volumetric accuracy when compared to both single- and multi-atlas parcellation at
the lobar level. Cognitive ability was assessed via tests of general cognitive ability,
and neuropsychological tests thought to show differential sensitivity to the integrity
of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared
considerable overlap with general cognitive ability, and cognitive scores correlated
most consistently with the volumes of the anterior cingulate. This is discussed in
light of the diverse connective profile of the cingulate and a need to integrate
information over more diffuse cognitive networks according to proposed de-differentiation
or compensation in ageing. Individuals with higher morning, evening
or pre-test cortisol levels showed consistently negative relationships with specific
regional volumes and tract integrity. Participants whose cortisol levels increased
between the start and end of cognitive testing showed selectively larger regional
volumes and lower tract diffusivity (correlation magnitudes <.44). The significant
relationships between cortisol levels and cognition indicated that flatter diurnal
slopes or higher pre-test levels related to poorer test performance. In contrast, higher
levels in the morning generally correlated with better scores (correlation magnitudes
<.25). Interpretation of all findings was moderated by sensitivity to type I error,
given the large number of comparisons conducted. Though there were limited
candidates for mediation analysis, cortisol-function relationships were partially
mediated by tract integrity (but not sub-regional frontal volumes) for memory and
post-error slowing. This thesis offers a novel perspective on the complex interplay
among glucocorticoids, cognition and the structure of the ageing brain. The findings
suggest some role for cortisol exposure in determining age-related decline in
complex cognition, mediated via brain structure
