67 research outputs found
Introduction to Configuration Path Integral Monte Carlo
In low-temperature high-density plasmas quantum effects of the electrons are
becoming increasingly important. This requires the development of new
theoretical and computational tools. Quantum Monte Carlo methods are among the
most successful approaches to first-principle simulations of many-body quantum
systems. In this chapter we present a recently developed method---the
configuration path integral Monte Carlo (CPIMC) method for moderately coupled,
highly degenerate fermions at finite temperatures. It is based on the second
quantization representation of the -particle density operator in a basis of
(anti-)symmetrized -particle states (configurations of occupation numbers)
and allows to tread arbitrary pair interactions in a continuous space.
We give a detailed description of the method and discuss the application to
electrons or, more generally, Coulomb-interacting fermions. As a test case we
consider a few quantum particles in a one-dimensional harmonic trap. Depending
on the coupling parameter (ratio of the interaction energy to kinetic energy),
the method strongly reduces the sign problem as compared to direct path
integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy
which is of particular importance for dense matter in laser plasmas or compact
stars. In order to provide a self-contained introduction, the chapter includes
a short introduction to Metropolis Monte Carlo methods and the second
quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific
Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J.
Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma
Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print)
978-3-319-05437-7 (Online
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Recommended from our members
Drama and discounting in the relational dynamics of corporate social responsibility
Employing theoretical resources from Transactional Analysis (TA) and drawing from interviews with managers dealing with social or environmental issues in their role, we explain how CSR activity provides a context for dramas in which actors may ignore, or discount aspects of self, others, and the contexts of their work as they maintain and reproduce the roles of Rescuers, Persecutors and Victims. In doing so, we add to knowledge about CSR by providing an explanation for how the contradictions of CSR are avoided in practice even when actors may be aware of them. Specifically, we theorise how CSR work can produce dramatic stories where adversity is apparently overcome, whilst little is actually achieved at the social level. We also add to the range of psychoanalytic tools used to account for organisational behaviours, emphasising how TA can explain the relational dynamics of CSR
Qualia: The Geometry of Integrated Information
According to the integrated information theory, the quantity of consciousness is
the amount of integrated information generated by a complex of elements, and the
quality of experience is specified by the informational relationships it
generates. This paper outlines a framework for characterizing the informational
relationships generated by such systems. Qualia space (Q) is a space having an
axis for each possible state (activity pattern) of a complex. Within Q, each
submechanism specifies a point corresponding to a repertoire of system states.
Arrows between repertoires in Q define informational relationships. Together,
these arrows specify a quale—a shape that completely and univocally
characterizes the quality of a conscious experience. Φ— the
height of this shape—is the quantity of consciousness associated with
the experience. Entanglement measures how irreducible informational
relationships are to their component relationships, specifying concepts and
modes. Several corollaries follow from these premises. The quale is determined
by both the mechanism and state of the system. Thus, two different systems
having identical activity patterns may generate different qualia. Conversely,
the same quale may be generated by two systems that differ in both activity and
connectivity. Both active and inactive elements specify a quale, but elements
that are inactivated do not. Also, the activation of an element affects
experience by changing the shape of the quale. The subdivision of experience
into modalities and submodalities corresponds to subshapes in Q. In principle,
different aspects of experience may be classified as different shapes in Q, and
the similarity between experiences reduces to similarities between shapes.
Finally, specific qualities, such as the “redness” of red,
while generated by a local mechanism, cannot be reduced to it, but require
considering the entire quale. Ultimately, the present framework may offer a
principled way for translating qualitative properties of experience into
mathematics
Metformin turns 62 in pharmacotherapy: Emergence of non-glycaemic effects and potential novel therapeutic applications
- …
