19 research outputs found

    Uridylation and adenylation of RNAs

    Get PDF
    The posttranscriptional addition of nontemplated nucleotides to the 3′ ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3′ ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area

    Expression Level of miR-93

    No full text

    Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors

    No full text
    MicroRNAs are considered as promising prognostic and diagnostic biomarkers of human cancer since their profiles differ between tumor types. Most of the tumor profiling studies were performed on rarely available fresh frozen (FF) samples. Alternatively, archived formalin-fixed paraffin-embedded (FFPE) tissue samples are also well applicable to larger-scale retrospective miRNA profiling studies. The aim of this study was to perform systematic comparison of the miRNA expression profiles between FF and macrodissected FFPE tonsillar tumors using the TaqMan Low Density Array system, with the data processed by different software programs and two types of normalization methods. We observed a marked correlation between the miRNA expression profiles of paired FF and FFPE samples; however, only 27-38% of the differentially deregulated miRNAs overlapped between the two source systems. The comparison of the results with regard to the distinct modes of data normalization revealed an overlap in 58-67% of differentially expressed miRNAs, with no influence of the choice of software platform. Our study highlights the fact that for an accurate comparison of the miRNA expression profiles from published studies, it is important to use the same type of clinical material and to test and select the best-performing normalization method for data analysis
    corecore