3 research outputs found
Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival
Cross species proteomics.
Proteomics has advanced in leaps and bounds over the past couple of decades. However, the continuing dependency of mass spectrometry-based protein identification on the searching of spectra against protein sequence databases limits many proteomics experiments. If there is no sequenced genome for a given species, then cross species proteomics is required, attempting to identify proteins across the species boundary, typically using the sequenced genome of a closely related species. Unlike sequence searching for homologues, the proteomics equivalent is confounded by small differences in amino acid sequences, leading to large differences in peptide masses; this renders mass matching of peptides and their product ions difficult. Therefore, the phylogenetic distance between the two species and the attendant level of conservation between the homologous proteins play a huge part in determining the extent of protein identification that is possible across the species boundary. In this chapter, we review the cross species challenge itself, as well as various approaches taken to deal with it and the success met with in past studies. This is followed by recommendations of best practice and suggestions to researchers facing this challenge as well as a final section predicting developments, which may help improve cross species proteomics in the future
