370 research outputs found
Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations
The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
A novel application of motion analysis for detecting stress responses in embryos at different stages of development.
Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Integration of face and voice during emotion perception : is there anything gained for the perceptual system beyond stimulus modality redundancy?
Stand Out in Class: restructuring theclassroom environment to reducesedentary behaviour in 9–10-year-olds—study protocol for a pilot clusterrandomised controlled trial
Background: Sedentary behaviour (sitting) is a highly prevalent negative health behaviour, with individuals of allages exposed to environments that promote prolonged sitting. Excessive sedentary behaviour adversely affects health inchildren and adults. As sedentary behaviour tracks from childhood into adulthood, the reduction of sedentary time inyoung people is key for the prevention of chronic diseases that result from excessive sitting in later life. The sedentaryschool classroom represents an ideal setting for environmentalchange, through the provision of sit-stand desks. Whilstthe use of sit-stand desks in classrooms demonstrates positiveeffects in some key outcomes, evidence is currently limitedby small samples and/or short intervention durations, withfewstudiesadoptingrandomisedcontrolledtrial(RCT)designs. This paper describes the protocol of a pilot cluster RCT of a sit-stand desk interventioninprimaryschoolclassrooms.Methods/Design:A two-arm pilot cluster RCT will be conducted in eight primary schools (four intervention, four control)with at least 120 year 5 children (aged 9–10 years). Sit-stand desks will replace six standard desks in the interventionclassrooms. Teachers will be encouraged to ensure all pupils are exposed to the sit-stand desks for at least 1 h/dayon average using a rotation system. Schools assigned to the control arm will continue with their usual practice, noenvironmental changes will be made to their classrooms. Measurements will be taken at baseline, beforerandomisation, and at the end of the schools’academic year. In this study, the primary outcomes of interest will beschool and participant recruitment and attrition, acceptability of the intervention, and acceptability and complianceto the proposed outcome measures (including activPAL-measured school-time and school-day sitting, accelerometer-measured physical activity, adiposity, blood pressure, cognitive function, academic progress, engagement, andbehaviour) for inclusion in a definitive trial. A full process evaluation and an exploratory economic evaluation willalso be conducted to further inform a definitive tria
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Galaxies and Cladistics
The Hubble tuning fork diagram, based on morphology and established in the
1930s, has always been the preferred scheme for classification of galaxies.
However, the current large amount of multiwavelength data, most often spectra,
for objects up to very high distances, asks for more sophisticated statistical
approaches. Interpreting formation and evolution of galaxies as a ?transmission
with modification' process, we have shown that the concepts and tools of
phylogenetic systematics can be heuristically transposed to the case of
galaxies. This approach, which we call ?astrocladistics', has successfully been
applied on several samples. Many difficulties still remain, some of them being
specific to the nature of both galaxies and their diversification processes,
some others being classical in cladistics, like the pertinence of the
descriptors in conveying any useful evolutionary information.Comment: Talk given at the "12th Evolutionary Biology Meeting" held in
Marseille, France, Sept. 24-26, 200
Xanthine oxidase inhibition and white matter hyperintensity progression following ischaemic stroke and transient ischaemic attack (XILO-FIST): a multicentre, double-blinded, randomised, placebo-controlled trial
BACKGROUND:
People who experience an ischaemic stroke are at risk of recurrent vascular events, progression of cerebrovascular disease, and cognitive decline. We assessed whether allopurinol, a xanthine oxidase inhibitor, reduced white matter hyperintensity (WMH) progression and blood pressure (BP) following ischaemic stroke or transient ischaemic attack (TIA).
METHODS:
In this multicentre, prospective, randomised, double-blinded, placebo-controlled trial conducted in 22 stroke units in the United Kingdom, we randomly assigned participants within 30-days of ischaemic stroke or TIA to receive oral allopurinol 300 mg twice daily or placebo for 104 weeks. All participants had brain MRI performed at baseline and week 104 and ambulatory blood pressure monitoring at baseline, week 4 and week 104. The primary outcome was the WMH Rotterdam Progression Score (RPS) at week 104. Analyses were by intention to treat. Participants who received at least one dose of allopurinol or placebo were included in the safety analysis. This trial is registered with ClinicalTrials.gov, NCT02122718.
FINDINGS:
Between 25th May 2015 and the 29th November 2018, 464 participants were enrolled (232 per group). A total of 372 (189 with placebo and 183 with allopurinol) attended for week 104 MRI and were included in analysis of the primary outcome. The RPS at week 104 was 1.3 (SD 1.8) with allopurinol and 1.5 (SD 1.9) with placebo (between group difference −0.17, 95% CI −0.52 to 0.17, p = 0.33). Serious adverse events were reported in 73 (32%) participants with allopurinol and in 64 (28%) with placebo. There was one potentially treatment related death in the allopurinol group.
INTERPRETATION:
Allopurinol use did not reduce WMH progression in people with recent ischaemic stroke or TIA and is unlikely to reduce the risk of stroke in unselected people.
FUNDING:
The British Heart Foundation and the UK Stroke Association
Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease
Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood
- …
