811 research outputs found
The Origin of Black Hole Entropy in String Theory
I review some recent work in which the quantum states of string theory which
are associated with certain black holes have been identified and counted. For
large black holes, the number of states turns out to be precisely the
exponential of the Bekenstein-Hawking entropy. This provides a statistical
origin for black hole thermodynamics in the context of a potential quantum
theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on
Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.
Rapid: Early classification of explosive transients using deep learning
We present RAPID (Real-time Automated Photometric IDentification), a novel time-series classification tool capable of automatically identifying transients from within a day of the initial alert, to the full lifetime of a light curve. Using a deep recurrent neural network with Gated Recurrent Units (GRUs), we present the first method specifically designed to provide early classifications of astronomical time-series data, typing 12 different transient classes. Our classifier can process light curves with any phase coverage, and it does not rely on deriving computationally expensive features from the data, making RAPID well-suited for processing the millions of alerts that ongoing and upcoming wide-field surveys such as the Zwicky Transient Facility (ZTF), and the Large Synoptic Survey Telescope (LSST) will produce. The classification accuracy improves over the lifetime of the transient as more photometric data becomes available, and across the 12 transient classes, we obtain an average area under the receiver operating characteristic curve of 0.95 and 0.98 at early and late epochs, respectively. We demonstrate RAPID's ability to effectively provide early classifications of transients from the ZTF data stream. We have made RAPID available as an open-source software package (this https URL) for machine learning-based alert-brokers to use for the autonomous and quick classification of several thousand light curves within a few seconds
Recommended from our members
Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian population
Background
Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D).
Methods
The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model.
Results
There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5).
Conclusions
This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population
Room-temperature bandlike transport and Hall effect in a high-mobility ambipolar polymer
The advent of new-class of high-mobility semiconducting polymers opens up a
window to address fundamental issues in electrical transport mechanism such as
hopping between localized states versus extended state conduction. Here, we
investigate the origin of ultra-low degree of disorder (~ 16 meV) and band-like
negative temperature (T) coefficient of the field effect electron mobility in a
high performance diketopyrrolopyrrole (DPP)-based semiconducting polymer.
Models based on the framework of mobility edge (ME) with exponential density of
states are invoked to explain the trends in transport. The temperature window
over which the system demonstrates de-localized transport was tuned by a
systematic introduction of disorder at the transport interface. Additionally,
the Hall mobility extracted from Hall-voltage measurements in these devices was
found to be comparable to field effect mobility in the high T band-like regime.
Comprehensive studies with different combinations of dielectrics and
semiconductors demonstrate the effectiveness of rationale molecular design
which emphasizes uniform-energetic landscape and low re-organization energy
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
MOSFiT: Modular open source fitter for transients
Much of the progress made in time-domain astronomy is accomplished by
relating observational multi-wavelength time series data to models derived from
our understanding of physical laws. This goal is typically accomplished by
dividing the task in two: collecting data (observing), and constructing models
to represent that data (theorizing). Owing to the natural tendency for
specialization, a disconnect can develop between the best available theories
and the best available data, potentially delaying advances in our understanding
new classes of transients. We introduce MOSFiT: the Modular Open-Source Fitter
for Transients, a Python-based package that downloads transient datasets from
open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo
ensembles of semi-analytical light curve fits to those datasets and their
associated Bayesian parameter posteriors, and optionally delivers the fitting
results back to those same catalogs to make them available to the rest of the
community. MOSFiT is designed to help bridge the gap between observations and
theory in time-domain astronomy; in addition to making the application of
existing models and creation of new models as simple as possible, MOSFiT yields
statistically robust predictions for transient characteristics, with a standard
output format that includes all the setup information necessary to reproduce a
given result. As large-scale surveys such as LSST discover entirely new classes
of transients, tools such as MOSFiT will be critical for enabling rapid
comparison of models against data in statistically consistent, reproducible,
and scientifically beneficial ways
- …
