3,029 research outputs found
An improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy
The discrimination of ECG signals using nonlinear dynamic parameters is of crucial importance in the cardiac disease therapy and chaos control for arrhythmia defibrillation in the cardiac system. However, the discrimination results of previous studies using features such as maximal Lyapunov exponent (λ max) and correlation dimension (D 2) alone are somewhat limited in recognition rate. In this paper, improved methods for computing λ max and D 2 are purposed. Another parameter from recurrence quantification analysis is incorporated to the new multi-feature Bayesian classifier with λ max and D 2 so as to improve the discrimination power. Experimental results have verified the prediction using Fisher discriminant that the maximal vertical line length (V max) from recurrence quantification analysis is the best to distinguish different ECG classes. Experimental results using the MIT-BIH Arrhythmia Database show improved and excellent overall accuracy (96.3%), average sensitivity (96.3%) and average specificity (98.15%) for discriminating sinus, premature ventricular contraction and ventricular flutter signals. © 2005 IEEE.published_or_final_version27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, 17-18 January 2006. In Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2005, p. 2459-246
Theoretical studies on the photophysical properties of luminescent pincer gold(III) arylacetylide complexes: the role of π-conjugation at the C-deprotonated [C^N^C] ligand
published_or_final_versio
Coupling of alpha(1)-Adrenoceptors to ERK1/2 in the Human Prostate
Introduction: alpha(1)-Adrenoceptors are considered critical for the regulation of prostatic smooth muscle tone. However, previous studies suggested further alpha(1)-adrenoceptor functions besides contraction. Here, we investigated whether alpha(1)-adrenoceptors in the human prostate may activate extracellular signal-regulated kinases (ERK1/2). Methods: Prostate tissues from patients undergoing radical prostatectomy were stimulated in vitro. Activation of ERK1/2 was assessed by Western blot analysis. Expression of ERK1/2 was studied by immunohistochemistry. The effect of ERK1/2 inhibition by U0126 on phenylephrine-induced contraction was studied in organ-bath experiments. Results: Stimulation of human prostate tissue with noradrenaline (30 mu M) or phenylephrine (10 mu M) resulted in ERK activation. This was reflected by increased levels of phosphorylated ERK1/2. Expression of ERK1/2 in the prostate was observed in smooth muscle cells. Incubation of prostate tissue with U0126 (30 mu M) resulted in ERK1/2 inhibition. Dose-dependent phenylephrine-induced contraction of prostate tissue was not modulated by U0126. Conclusions: alpha(1)-Adrenoceptors in the human prostate are coupled to ERK1/2. This may partially explain previous observations suggesting a role of alpha(1)-adrenoceptors in the regulation of prostate growth. Copyright (C) 2011 S. Karger AG, Base
An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly
Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays
Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors
The development of highly-sensitive and miniaturized sensors that capable of
real-time analytes detection is highly desirable. Nowadays, toxic or colorless
gas detection, air pollution monitoring, harmful chemical, pressure, strain,
humidity, and temperature sensors based on photonic crystal fiber (PCF) are
increasing rapidly due to its compact structure, fast response and efficient
light controlling capabilities. The propagating light through the PCF can be
controlled by varying the structural parameters and core-cladding materials, as
a result, evanescent field can be enhanced significantly which is the main
component of the PCF based gas/chemical sensors. The aim of this chapter is to
(1) describe the principle operation of PCF based gas/ chemical sensors, (2)
discuss the important PCF properties for optical sensors, (3) extensively
discuss the different types of microstructured optical fiber based gas/
chemical sensors, (4) study the effects of different core-cladding shapes, and
fiber background materials on sensing performance, and (5) highlight the main
challenges of PCF based gas/ chemical sensors and possible solutions
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
Excess Higgs Production in Neutralino Decays
The ATLAS and CMS experiments have recently claimed discovery of a Higgs
boson-like particle at ~5 sigma confidence and are beginning to test the
Standard Model predictions for its production and decay. In a variety of
supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and
the LSP. In natural SUSY models, a light third generation squark decaying
through this chain can lead to large excess Higgs production while evading
existing BSM searches. Such models can be observed at the 8 TeV LHC in channels
exploiting the rare diphoton decays of the Higgs produced in the cascade decay.
Identifying a diphoton resonance in association with missing energy, a lepton,
or b-tagged jets is a promising search strategy for discovery of these models,
and would immediately signal new physics involving production of a Higgs boson.
We also discuss the possibility that excess Higgs production in these SUSY
decays can be responsible for enhancements of up to 50% over the SM prediction
for the observed rate in the existing inclusive diphoton searches, a scenario
which would likely by the end of the 8 TeV run be accompanied by excesses in
the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential
discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure
Seesaw Neutrino Signals at the Large Hadron Collider
We discuss the scenario with gauge singlet fermions (right-handed neutrinos)
accessible at the energy of the Large Hadron Collider. The singlet fermions
generate tiny neutrino masses via the seesaw mechanism and also have sizable
couplings to the standard-model particles. We demonstrate that these two facts,
which are naively not satisfied simultaneously, are reconciled in the
five-dimensional framework in various fashions, which make the seesaw mechanism
observable. The collider signal of tri-lepton final states with transverse
missing energy is investigated for two explicit examples of the observable
seesaw, taking account of three types of neutrino mass spectrum and the
constraint from lepton flavor violation. We find by showing the significance of
signal discovery that the collider experiment has a potential to find signals
of extra dimensions and the origin of small neutrino masses.Comment: 27 pages, 4 figure
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
A multi-modal network approach to model public transport accessibility impacts of bicycle-train integration policies
In the Netherlands, the bicycle plays an important in station access and, to a lesser extent, in station egress. There is however fairly little knowledge in the potential effects of bicycle-train integration policies. The aim of this paper is to examine the impacts of bicycle-train integration policies on train ridership and job accessibility for public transport users.MethodsWe extended the Dutch National Transport Model (NVM) by implementing a detailed bicycle network linked to the public transport network, access/egress mode combinations and station specific access and egress penalties by mode and station type derived from a stated choice survey. Furthermore, the effects of several bicycletrain integration policy scenarios were examined for a case study for Randstad South, in the Netherlands, comprising a dense train network with 54 train stations.ConclusionsOur analysis shows that improving the quality of bicycle routes and parking can substantially increase train ridership and potential job accessibility for train users. Large and medium stations are more sensitive to improvements in bicycle-train integration policies, while small stations are more sensitive to improvements in the train level of service
- …
