9,434 research outputs found
Optimization of Battery Energy Storage to Improve Power System Oscillation Damping
A placement problem for multiple Battery Energy Storage System (BESS) units
is formulated towards power system transient voltage stability enhancement in
this paper. The problem is solved by the Cross-Entropy (CE) optimization
method. A simulation-based approach is adopted to incorporate higher-order
dynamics and nonlinearities of generators and loads. The objective is to
maximize the voltage stability index, which is setup based on certain
grid-codes. Formulations of the optimization problem are then discussed.
Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on
the New England 39-Bus system. Results indicate that installing BESS units at
the optimized location can alleviate transient voltage instability issue
compared with the original system with no BESS. The CE placement algorithm is
also compared with the classic PSO (Particle Swarm Optimization) method, and
its superiority is demonstrated in terms of a faster convergence rate with
matched solution qualities.Comment: This paper has been accepted by IEEE Transactions on Sustainable
Energy and now still in online-publication phase, IEEE Transactions on
Sustainable Energy. 201
Recommended from our members
Volume Modeling for Rapid Prototyping
The expanding workspace of Rapid Prototyping will draw on the new developments
in geometric modeling. Volume modeling has substantial advantages over other modeling
schemes to meet the emerging requirements of Rapid Prototyping technology. It provides us with
a new approach to design complex geometry and topology. The integration of the volume
modeling and Rapid Prototyping technology will help us to fully exploit RP's ability to fabricate
objects with complex structures. This paper addresses our research and practice in a volume
modeling system toward Rapid Prototyping. Novel techniques in volumetric data manipulation,
NURBS volume models and triangular facet generation over solid models are presented.
Computer models designed by this system and their corresponding DTM products are also
shown atthe end of this paper.Mechanical Engineerin
Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks
Mixed-criticality models are an emerging paradigm for the design of real-time
systems because of their significantly improved resource efficiency. However,
formal mixed-criticality models have traditionally been characterized by two
impractical assumptions: once \textit{any} high-criticality task overruns,
\textit{all} low-criticality tasks are suspended and \textit{all other}
high-criticality tasks are assumed to exhibit high-criticality behaviors at the
same time. In this paper, we propose a more realistic mixed-criticality model,
called the flexible mixed-criticality (FMC) model, in which these two issues
are addressed in a combined manner. In this new model, only the overrun task
itself is assumed to exhibit high-criticality behavior, while other
high-criticality tasks remain in the same mode as before. The guaranteed
service levels of low-criticality tasks are gracefully degraded with the
overruns of high-criticality tasks. We derive a utilization-based technique to
analyze the schedulability of this new mixed-criticality model under EDF-VD
scheduling. During runtime, the proposed test condition serves an important
criterion for dynamic service level tuning, by means of which the maximum
available execution budget for low-criticality tasks can be directly determined
with minimal overhead while guaranteeing mixed-criticality schedulability.
Experiments demonstrate the effectiveness of the FMC scheme compared with
state-of-the-art techniques.Comment: This paper has been submitted to IEEE Transaction on Computers (TC)
on Sept-09th-201
Study on space-time structure of Higgs boson decay using HBT correlation Method in ee collision at =250 GeV
The space-time structure of the Higgs boson decay are carefully studied with
the HBT correlation method using ee collision events produced through
Monte Carlo generator PYTHIA 8.2 at =250GeV. The Higgs boson jets
(Higgs-jets) are identified by H-tag tracing. The measurement of the Higgs
boson radius and decay lifetime are derived from HBT correlation of its decay
final state pions inside Higgs-jets in the ee collisions events with an
upper bound of fm and fs. This result is consistent with CMS data.Comment: 7 pages,3 figure
- …
