630 research outputs found

    Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    Get PDF
    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid 3He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid 3He. We show that the fork oscillator can be considered as self-calibrating in superfluid 3He at the crossover point from hydrodynamic into ballistic quasiparticle regime.Peer reviewe

    Role of recreancy in predicting risk perception: Analysis of a conceptual and operational discrepancy.

    Get PDF

    Shallow-water mining undermines global sustainability goals

    Get PDF
    Coastal mineral resources are pro-moted as a sustainable option to meet increasing metal demands. However, shallow-water mining contradicts international conserva-tion and sustainability goals and its regulative legislation is still being de-veloped. In the absence of thorough comparisons of different mining practices, there are no justifications in favour of shallow-water mining.Peer reviewe

    Measuring Atmospheric Icing Rate in Mixed-Phase Clouds Using Filtered Particle Data

    Get PDF
    AbstractIn-cloud icing of objects is caused by supercooled microscopic water droplets carried by the wind. To estimate the icing rate of objects in such conditions, the liquid water content (LWC) of the icing cloud and the median volume diameter (MVD) of the droplets are measured. Mixed-phase clouds also contain ice crystals that must be ruled out in order to avoid the overestimation of the icing rate. Typically, cloud droplet instruments are not able to do this. A particle imaging instrument icing condition evaluation method (ICEMET) was used to observe in-cloud icing conditions. This lensless device uses a computational imaging method to reconstruct the shadow images of the microscopic objects. The size, position, and shape descriptors of each particle are measured. These data are then used to filter out the ice crystals. The droplet size distribution and the size of the measurement volume are used to determine the LWC and MVD. The performance of the instrument was tested under mixed-phase icing conditions in a wind tunnel and on a wind turbine. The measured LWC and MVD values were used to model the ice accretion on a cylinder-shaped object according to the ISO 12494:2017 icing standard. In the wind tunnel, the modeled ice mass was compared with the weighed ice mass collected by a cylinder. According to our results, ice accretion rates were overestimated by 65.6% on average without filtering out the ice crystals. Thus, the ability to distinguish between droplets and ice crystals is essential for estimating the icing rate properly.Abstract In-cloud icing of objects is caused by supercooled microscopic water droplets carried by the wind. To estimate the icing rate of objects in such conditions, the liquid water content (LWC) of the icing cloud and the median volume diameter (MVD) of the droplets are measured. Mixed-phase clouds also contain ice crystals that must be ruled out in order to avoid the overestimation of the icing rate. Typically, cloud droplet instruments are not able to do this. A particle imaging instrument icing condition evaluation method (ICEMET) was used to observe in-cloud icing conditions. This lensless device uses a computational imaging method to reconstruct the shadow images of the microscopic objects. The size, position, and shape descriptors of each particle are measured. These data are then used to filter out the ice crystals. The droplet size distribution and the size of the measurement volume are used to determine the LWC and MVD. The performance of the instrument was tested under mixed-phase icing conditions in a wind tunnel and on a wind turbine. The measured LWC and MVD values were used to model the ice accretion on a cylinder-shaped object according to the ISO 12494:2017 icing standard. In the wind tunnel, the modeled ice mass was compared with the weighed ice mass collected by a cylinder. According to our results, ice accretion rates were overestimated by 65.6% on average without filtering out the ice crystals. Thus, the ability to distinguish between droplets and ice crystals is essential for estimating the icing rate properly

    Droplet Size Distribution and Liquid Water Content Monitoring in Icing Conditions with the ICEMET Sensor

    Get PDF
    AbstractField measurement results from a novel optical cloud droplet monitoring sensor designed for icing conditions monitoring are presented. The sensor has been demonstrated at two sites in northern Finland; first at Global Atmosphere Watch Station in Pallas together with a reference icing sensor and secondly mounted on a wind turbine nacelle in eastern Finland in 2017. Test runs in an icing wind tunnel have been made where more severe icing conditions were generated.The ICEMET sensor measurement principle is based on capturing the images of cloud droplets and ice particles. Droplet properties, such as droplet size distribution (DSD) and median volume diameter (MVD), are acquired by means of image analysis of the captured images. The images and the calculated features (size, location, shape descriptors) of all the found particles are saved in a database.A volume of 0.5 cm³ is imaged in a single frame. The liquid water content (LWC) is calculated based on this known sample volume in combination with the droplet data acquired from the image analysis of the found and filtered particles (droplets only).The sensor is typically freely rotating — it aligns itself against the wind by a wing on the backside. In the rotating configuration, the maximum sampling rate is 3 cm³/s. The movement of the particles inside sample volume is frozen in the images by a nanosecond scale light flash, making the sample volume independent of the wind speed. The maximum wind speed tested in a wind tunnel with the sensor is 40 m/s. The cloud droplet sizes from 5 to 200 microns are measured by the ICEMET sensor.In this paper LWC and MVD measurement results from the field tests and the wind tunnel tests with the sensor are presented and discussed.The webpages for the sensor can be found at https://www.oulu.fi/icemet.Abstract Field measurement results from a novel optical cloud droplet monitoring sensor designed for icing conditions monitoring are presented. The sensor has been demonstrated at two sites in northern Finland; first at Global Atmosphere Watch Station in Pallas together with a reference icing sensor and secondly mounted on a wind turbine nacelle in eastern Finland in 2017. Test runs in an icing wind tunnel have been made where more severe icing conditions were generated. The ICEMET sensor measurement principle is based on capturing the images of cloud droplets and ice particles. Droplet properties, such as droplet size distribution (DSD) and median volume diameter (MVD), are acquired by means of image analysis of the captured images. The images and the calculated features (size, location, shape descriptors) of all the found particles are saved in a database. A volume of 0.5 cm³ is imaged in a single frame. The liquid water content (LWC) is calculated based on this known sample volume in combination with the droplet data acquired from the image analysis of the found and filtered particles (droplets only). The sensor is typically freely rotating — it aligns itself against the wind by a wing on the backside. In the rotating configuration, the maximum sampling rate is 3 cm³/s. The movement of the particles inside sample volume is frozen in the images by a nanosecond scale light flash, making the sample volume independent of the wind speed. The maximum wind speed tested in a wind tunnel with the sensor is 40 m/s. The cloud droplet sizes from 5 to 200 microns are measured by the ICEMET sensor. In this paper LWC and MVD measurement results from the field tests and the wind tunnel tests with the sensor are presented and discussed. The webpages for the sensor can be found at https://www.oulu.fi/icemet

    A rotating holographic imager for stationary cloud droplet and ice crystal measurements

    Get PDF
    AbstractAn optical cloud droplet and ice crystal measurement system ICEMET (icing condition evaluation method), designed for present icing condition monitoring in field conditions, is presented. The aim in this work has been to develop a simple but precise imaging technique to measure the two often missing parameters needed in icing rate calculations caused by icing clouds—the droplet size distribution (DSD) and the liquid water content (LWC) of the air. The measurement principle of the sensor is based on lens-less digital in-line holographic imaging. Cloud droplets and ice crystals are illuminated by a short laser light pulse and the resulting hologram is digitally sampled by a digital image sensor and the digital hologram is then numerically analyzed to calculate the present DSD and LWC values. The sensor has anti-icing heating power up to 500 W and it is freely rotating by the wind for an optimal sampling direction and aerodynamics. A volume of 0.5 cm³ is sampled in each hologram and the maximum sampling rate is 3 cm³/s. Laboratory tests and simulations were made to ensure the adequate operation of the measurement sensor. Computational flow dynamics simulations showed good agreement with droplet concentration distributions measured from an icing wind tunnel. The anti-icing heating of the sensor kept the sensor operational even in severe icing conditions; the most severe test conditions were the temperature − 15 °C, wind speed 20 m/s and the LWC 0.185 g/m³. The verification measurements made using NIST traceable monodisperse particle standard glass spheres showed that the ICEMET sensor measurement median diameter 25.54 µm matched well with 25.60 µm ± 0.70 µm diameter confidence level given by the manufacturer.Abstract An optical cloud droplet and ice crystal measurement system ICEMET (icing condition evaluation method), designed for present icing condition monitoring in field conditions, is presented. The aim in this work has been to develop a simple but precise imaging technique to measure the two often missing parameters needed in icing rate calculations caused by icing clouds—the droplet size distribution (DSD) and the liquid water content (LWC) of the air. The measurement principle of the sensor is based on lens-less digital in-line holographic imaging. Cloud droplets and ice crystals are illuminated by a short laser light pulse and the resulting hologram is digitally sampled by a digital image sensor and the digital hologram is then numerically analyzed to calculate the present DSD and LWC values. The sensor has anti-icing heating power up to 500 W and it is freely rotating by the wind for an optimal sampling direction and aerodynamics. A volume of 0.5 cm³ is sampled in each hologram and the maximum sampling rate is 3 cm³/s. Laboratory tests and simulations were made to ensure the adequate operation of the measurement sensor. Computational flow dynamics simulations showed good agreement with droplet concentration distributions measured from an icing wind tunnel. The anti-icing heating of the sensor kept the sensor operational even in severe icing conditions; the most severe test conditions were the temperature − 15 °C, wind speed 20 m/s and the LWC 0.185 g/m³. The verification measurements made using NIST traceable monodisperse particle standard glass spheres showed that the ICEMET sensor measurement median diameter 25.54 µm matched well with 25.60 µm ± 0.70 µm diameter confidence level given by the manufacturer

    RNA Binding to CBP Stimulates Histone Acetylation and Transcription

    Get PDF
    CBP/p300 are transcription co-activators whose binding is a signature of enhancers, cis-regulatory elements that control patterns of gene expression in multicellular organisms. Active enhancers produce bi-directional enhancer RNAs (eRNAs) and display CBP/p300-dependent histone acetylation. Here, we demonstrate that CBP binds directly to RNAs in vivo and in vitro. RNAs bound to CBP in vivo include a large number of eRNAs. Using steady-state histone acetyltransferase (HAT) assays, we show that an RNA binding region in the HAT domain of CBP—a regulatory motif unique to CBP/p300—allows RNA to stimulate CBP’s HAT activity. At enhancers where CBP interacts with eRNAs, stimulation manifests in RNA-dependent changes in the histone acetylation mediated by CBP, such as H3K27ac, and by corresponding changes in gene expression. By interacting directly with CBP, eRNAs contribute to the unique chromatin structure at active enhancers, which, in turn, is required for regulation of target genes

    Constitutive flow behaviour of austenite at low temperatures and its influence on bainite transformation characteristics of ausformed medium-carbon steel

    Get PDF
    AbstractIn order to impart superior mechanical properties to medium carbon carbide-free bainitic steels, an innovative approach has been adopted to extensively refine the bainitic ferrite plate thickness. Unlike controlled deformation in the no-recrystallization regime above the Ar3 temperature, an attempt has been made in this study to carry out low temperature ausforming in the bay between ferrite and bainite C-curves at 500 °C in order to impart high dislocation densities in the austenite prior to phase transformation. Two experimental high-silicon, medium carbon steels were suitably designed and processed for this study, with one steel containing small additions of 0.3Mo and 0.03Nb. Flow stress measurements were made using single-hit compression tests in the temperature range 300–900 °C in steps of 100 °C at different strain rates in the range 0.1–10 s⁻¹ on a Gleeble simulator. Samples ausformed at 500 °C were isothermally held for 1 h at different transformation temperatures in the range of 300–400 °C to complete the bainitic transformation. Influence of strain induced bainite transformation on flow stress was obvious at 0.01 s⁻¹, particularly at 300 and 400 °C. Despite enhanced nucleation in fine-grained steel B containing Nb + Mo, growth of bainite sheaves was much slower. Dilatation behaviour was comparable for the two steels at Abstract In order to impart superior mechanical properties to medium carbon carbide-free bainitic steels, an innovative approach has been adopted to extensively refine the bainitic ferrite plate thickness. Unlike controlled deformation in the no-recrystallization regime above the Ar3 temperature, an attempt has been made in this study to carry out low temperature ausforming in the bay between ferrite and bainite C-curves at 500 °C in order to impart high dislocation densities in the austenite prior to phase transformation. Two experimental high-silicon, medium carbon steels were suitably designed and processed for this study, with one steel containing small additions of 0.3Mo and 0.03Nb. Flow stress measurements were made using single-hit compression tests in the temperature range 300–900 °C in steps of 100 °C at different strain rates in the range 0.1–10 s⁻¹ on a Gleeble simulator. Samples ausformed at 500 °C were isothermally held for 1 h at different transformation temperatures in the range of 300–400 °C to complete the bainitic transformation. Influence of strain induced bainite transformation on flow stress was obvious at 0.01 s⁻¹, particularly at 300 and 400 °C. Despite enhanced nucleation in fine-grained steel B containing Nb + Mo, growth of bainite sheaves was much slower. Dilatation behaviour was comparable for the two steels at <350 °C, but at higher temperatures, the effect of Nb + Mo on slower transformation kinetics was obvious. The microstructure of both steels showed extremely fine bainitic ferrite below 325 °C, but at higher temperatures, coarse bainite with M/A constituents and extensive martensite formed in steels without or with Nb + Mo constituents. A correlation between hardness data and retained austenite contents has been established in both the steels. The paper presents the first account of the flow stress and transformation behaviour including the influence of Nb + Mo alloying and the details concerning the carbon-enriched austenite retained at room temperature and hardness variation as a function of isothermal holding temperature

    Quantum degeneracy in mesoscopic matter: Casimir effect and Bose-Einstein condensation

    Full text link
    The ground-state phonon pressure is an analogue to the famous Casimir pressure of vacuum produced by zero-point photons. The acoustic Casimir forces are, however, many orders of magnitude weaker than the electromagnetic Casimir forces, as the typical speed of sound is 100 000 times smaller than the speed of light. Because of its weakness, zero-point acoustic Casimir pressure was never observed, although the pressure of artificially introduced sound noise on a narrow aperture has been reported. However, the magnitude of Casimir pressure increases as 1/L31/L^3 with the decrease of the sample size LL, and reaches picoNewtons in the sub-micron scales. We demonstrate and measure the acoustic Casimir pressure induced by zero-point phonons in solid helium adsorbed on a carbon nanotube. We have also observed Casimir-like "pushing out" thermal phonons with the decreasing temperature or the length. We also show that all thermodynamic quantities are size-dependent, and therefore in the mesoscopic range Lc/(kBT)L\lesssim\hbar{c}/(k_BT) quadruple points are possible on the phase diagram where four different phases coexist. Due to the smallness of solid helium sample, temperature of Bose-Einstein condensation (BEC) of vacancies is relatively high, 1010010-100 mK. This allowed us to experimentally discover the BEC in a system of zero-point vacancies, predicted more than 50 years ago
    corecore