817 research outputs found
Local is not always better: the impact of climate information on values, behavior and policy support
In the current research, we experimentally examined the effect of providing local or global information about the impacts of climate change on individuals’ perceived importance of climate change and on their willingness to take action to address it, including policy support. We examined these relationships in the context of individuals’ general value orientations. Our findings, from 99 US residents, suggest that different kinds of climate information (local, global, or none) interact with values vis-à-vis our dependent variables. Specifically, while self-transcendent values predict perceived importance and pro-environmental behavior across all three information conditions, the effect on policy support is less clear. Furthermore, we detected a “reactance effect” where individuals with self-enhancing values who read local information thought that climate change was less important and were less willing to engage in pro-environmental behavior and support policy than self-enhancing individuals in the other information conditions. These results suggest that policy makers and public communicators may want to be cognizant of their audience’s general value orientation. Local information may not only be ineffective but may also prove counterproductive with individuals whose value orientations are more self-enhancing than self-transcendent
Recommended from our members
Risk measures for direct real estate investments with non-normal or unknown return distributions
The volatility of returns is probably the most widely used risk measure for real estate. This is rather surprising since a number of studies have cast doubts on the view that volatility can capture the manifold risks attached to properties and corresponds to the risk attitude of investors. A central issue in this discussion is the statistical properties of real estate returns—in contrast to neoclassical capital market theory they are mostly non-normal and often unknown, which render many statistical measures useless. Based on a literature review and an analysis of data from Germany we provide evidence that volatility alone is inappropriate for measuring the risk of direct real estate.
We use a unique data sample by IPD, which includes the total returns of 939 properties across different usage types (56% office, 20% retail, 8% others and 16% residential properties) from 1996 to 2009, the German IPD Index, and the German Property Index. The analysis of the distributional characteristics shows that German real estate returns in this period were not normally distributed and that a logistic distribution would have been a better fit. This is in line with most of the current literature on this subject and leads to the question which indicators are more appropriate to measure real estate risks. We suggest that a combination of quantitative and qualitative risk measures more adequately captures real estate risks and conforms better with investor attitudes to risk. Furthermore, we present criteria for the purpose of risk classification
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector
Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge’s flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Recommended from our members
Motion and pattern cortical potentials in adults with high-functioning autism spectrum disorder
Purpose: Autism spectrum disorder (ASD) is a condition in which visual perception to both static and moving stimuli is altered. The aim of this study was to investigate the early cortical responses of subjects with ASD to simple patterns and moving radial rings using visual evoked potentials (VEPs).
Methods: Male ASD participants (n = 9) and typically developing (TD) individuals (n = 7) were matched for full, performance and verbal IQ (p > 0.263). VEPs were recorded to the pattern reversing checks of 50′ side length presented with Michelson contrasts of 98 and 10 % and to the onset of motion—either expansion or contraction of low-contrast concentric rings (33.3 % duty cycle at 10 % contrast).
Results: There were no significant differences between groups in the VEPs elicited by pattern reversal checkerboards of high (98 %) or low (10 %) contrast. The ASD group had a significantly larger N160 peak (1.85 x) amplitude to motion onset VEPs elicited by the expansion of radial rings (p = 0.001). No differences were evident in contraction VEP peak amplitudes nor in the latencies of the motion onset N160 peaks. There was no evidence of a response that could be associated with adaptation to the motion stimulus in the interstimulus interval following an expansion or contraction phase of the rings.
Conclusion: These data support a difference in processing of motion onset stimuli in this adult high-functioning ASD group compared to the TD group
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group.
The frailty syndrome has recently attracted attention of the scientific community and public health organizations as precursor and contributor of age-related conditions (particularly disability) in older persons. in parallel, dementia and cognitive disorders also represent major healthcare and social priorities. although physical frailty and cognitive impairment have shown to be related in epidemiological studies, their pathophysiological mechanisms have been usually studied separately. an international Consensus Group on “Cognitive Frailty” was organized by the international academy on nutrition and aging (i.a.n.a) and the international association of Gerontology and Geriatrics (i.a.G.G) on april 16th, 2013 in toulouse (France). the present report describes the results of the Consensus Group and provides the first definition of a “Cognitive Frailty” condition in older adults. specific aim of this approach was to facilitate the design of future personalized preventive interventions in older persons. Finally, the Group discussed the use of multidomain interventions focused on the physical, nutritional, cognitive and psychological domains for improving the well-being and quality of life in the elderly. the consensus panel proposed the identification of the so-called “cognitive frailty” as an heterogeneous clinical manifestation characterized by the simultaneous presence of both physical frailty and cognitive impairment. in particular, the key factors defining such a condition include: 1) presence of physical frailty and cognitive impairment (Cdr=0.5); and 2) exclusion of concurrent ad dementia or other dementias. under different circumstances, cognitive frailty may represent a precursor of neurodegenerative processes. a potential for reversibility may also characterize this entity. a psychological component of the condition is evident and concurs at increasing the vulnerability of the individual to stressors
- …
