270 research outputs found

    Shortest Reconfiguration of Perfect Matchings via Alternating Cycles

    Get PDF
    Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar

    Set Covering with Ordered Replacement -- Additive and Multiplicative Gaps

    Full text link
    We consider set covering problems where the underlying set system satisfies a particular replacement property w.r.t. a given partial order on the elements: Whenever a set is in the set system then a set stemming from it via the replacement of an element by a smaller element is also in the set system. Many variants of BIN PACKING that have appeared in the literature are such set covering problems with ordered replacement. We provide a rigorous account on the additive and multiplicative integrality gap and approximability of set covering with replacement. In particular we provide a polylogarithmic upper bound on the additive integrality gap that also yields a polynomial time additive approximation algorithm if the linear programming relaxation can be efficiently solved. We furthermore present an extensive list of covering problems that fall into our framework and consequently have polylogarithmic additive gaps as well

    Parameterized Complexity of Sparse Linear Complementarity Problems

    Get PDF
    In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixed-parameter algorithm for the LCP with all the parameters. We also show that if we drop any of the three parameters, then the LCP is fixed-parameter intractable. In addition, we discuss the nonexistence of a polynomial kernel for the LCP

    Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint

    Get PDF
    In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a (0.363-epsilon)-approximation algorithm, requiring only a single pass through the data; moreover, we propose a (0.4-epsilon)-approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and epsilon

    Reconfiguration of Labeled Matchings in Triangular Grid Graphs

    Get PDF
    This paper introduces a new reconfiguration problem of matchings in a triangular grid graph. In this problem, we are given a nearly perfect matching in which each matching edge is labeled, and aim to transform it to a target matching by sliding edges one by one. This problem is motivated to investigate the solvability of a sliding-block puzzle called "Gourds" on a hexagonal grid board, introduced by Hamersma et al. [ISAAC 2020]. The main contribution of this paper is to prove that, if a triangular grid graph is factor-critical and has a vertex of degree 6, then any two matchings can be reconfigured to each other. Moreover, for a triangular grid graph (which may not have a degree-6 vertex), we present another sufficient condition using the local connectivity. Both of our results provide broad sufficient conditions for the solvability of the Gourds puzzle on a hexagonal grid board with holes, where Hamersma et al. left it as an open question

    Deterministic Primal-Dual Algorithms for Online k-way Matching with Delays

    Full text link
    In this paper, we study the Min-cost Perfect kk-way Matching with Delays (kk-MPMD), recently introduced by Melnyk et al. In the problem, mm requests arrive one-by-one over time in a metric space. At any time, we can irrevocably make a group of kk requests who arrived so far, that incurs the distance cost among the kk requests in addition to the sum of the waiting cost for the kk requests. The goal is to partition all the requests into groups of kk requests, minimizing the total cost. The problem is a generalization of the min-cost perfect matching with delays (corresponding to 22-MPMD). It is known that no online algorithm for kk-MPMD can achieve a bounded competitive ratio in general, where the competitive ratio is the worst-case ratio between its performance and the offline optimal value. On the other hand, kk-MPMD is known to admit a randomized online algorithm with competitive ratio O(k5logn)O(k^{5}\log n) for a certain class of kk-point metrics called the HH-metric, where nn is the size of the metric space. In this paper, we propose a deterministic online algorithm with a competitive ratio of O(mk2)O(mk^2) for the kk-MPMD in HH-metric space. Furthermore, we show that the competitive ratio can be improved to O(m+k2)O(m + k^2) if the metric is given as a diameter on a line

    Market Pricing for Matroid Rank Valuations

    Get PDF
    In this paper, we study the problem of maximizing social welfare in combinatorial markets through pricing schemes. We consider the existence of prices that are capable to achieve optimal social welfare without a central tie-breaking coordinator. In the case of two buyers with rank valuations, we give polynomial-time algorithms that always find such prices when one of the matroids is a simple partition matroid or both matroids are strongly base orderable. This result partially answers a question raised by D\"uetting and V\'egh in 2017. We further formalize a weighted variant of the conjecture of D\"uetting and V\'egh, and show that the weighted variant can be reduced to the unweighted one based on the weight-splitting theorem for weighted matroid intersection by Frank. We also show that a similar reduction technique works for M{}^\natural-concave functions, or equivalently, gross substitutes functions

    Complexity of the Multi-Service Center Problem

    Get PDF
    The multi-service center problem is a variant of facility location problems. In the problem, we consider locating p facilities on a graph, each of which provides distinct service required by all vertices. Each vertex incurs the cost determined by the sum of the weighted distances to the p facilities. The aim of the problem is to minimize the maximum cost among all vertices. This problem is known to be NP-hard for general graphs, while it is solvable in polynomial time when p is a fixed constant. In this paper, we give sharp analyses for the complexity of the problem from the viewpoint of graph classes and weights on vertices. We first propose a polynomial-time algorithm for trees when p is a part of input. In contrast, we prove that the problem becomes strongly NP-hard even for cycles. We also show that when vertices are allowed to have negative weights, the problem becomes NP-hard for paths of only three vertices and strongly NP-hard for stars
    corecore