568 research outputs found

    Classification and retrieval of endoscopic images from the clinical outcomes research initiative (CORI) collection

    Get PDF
    Traditionally, image retrieval systems have been text-based, relying on the annotations or captions associated with the images. Although text-based information retrieval methods are mature and well-researched, they are limited by the quality and availability of the annotations associated with the images. Advances in techniques in computer vision have led to methods for using the image as the search entity. Our project aimed to create an image retrieval system with a set of 1500 upper endoscopic images from the Clinical Outcomes Research Initiative Collection

    Evaluating performance of biomedical image retrieval systems - an overview of the medical image retrieval task at ImageCLEF 2004-2013

    Get PDF
    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created

    Shangri-La: a medical case-based retrieval tool

    Get PDF
    Large amounts of medical visual data are produced in hospitals daily and made available continuously via publications in the scientific literature, representing the medical knowledge. However, it is not always easy to find the desired information and in clinical routine the time to fulfil an information need is often very limited. Information retrieval systems are a useful tool to provide access to these documents/images in the biomedical literature related to information needs of medical professionals. Shangri–La is a medical retrieval system that can potentially help clinicians to make decisions on difficult cases. It retrieves articles from the biomedical literature when querying a case description and attached images. The system is based on a multimodal retrieval approach with a focus on the integration of visual information connected to text. The approach includes a query–adaptive multimodal fusion criterion that analyses if visual features are suitable to be fused with text for the retrieval. Furthermore, image modality information is integrated in the retrieval step. The approach is evaluated using the ImageCLEFmed 2013 medical retrieval benchmark and can thus be compared to other approaches. Results show that the final approach outperforms the best multimodal approach submitted to ImageCLEFmed 2013

    Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features.

    Get PDF
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic "feature" sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy

    Multimodality imaging and mathematical modelling of drug delivery to glioblastomas

    Get PDF
    MAJC would like to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme “Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation” supported by EPSRC Grant Number EP/K032208/1.Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization and they typically exhibit a disrupted blood brain barrier. Although it has been hypothesized that the “normalization” of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of blood brain barrier integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated – flow rate, vessel permeability, and tissue diffusion coefficient – interact nonlinearly to produce the observed average drug concentration in the microenvironment.PostprintPeer reviewe
    corecore