740 research outputs found

    Complement Activation in Patients With Probable Systemic Lupus Erythematosus and Ability to Predict Progression to American College of Rheumatology-Classified Systemic Lupus Erythematosus.

    Get PDF
    ObjectiveTo evaluate the frequency of cell-bound complement activation products (CB-CAPs) as a marker of complement activation in patients with suspected systemic lupus erythematosus (SLE) and the usefulness of this biomarker as a predictor of the evolution of probable SLE into SLE as classified by the American College of Rheumatology (ACR) criteria.MethodsPatients in whom SLE was suspected by lupus experts and who fulfilled 3 ACR classification criteria for SLE (probable SLE) were enrolled, along with patients with established SLE as classified by both the ACR and the Systemic Lupus International Collaborating Clinics (SLICC) criteria, patients with primary Sjögren's syndrome (SS), and patients with other rheumatic diseases. Individual CB-CAPs were measured by flow cytometry, and positivity rates were compared to those of commonly assessed biomarkers, including serum complement proteins (C3 and C4) and autoantibodies. The frequency of a positive multianalyte assay panel (MAP), which includes CB-CAPs, was also evaluated. Probable SLE cases were followed up prospectively.ResultsThe 92 patients with probable SLE were diagnosed more recently than the 53 patients with established SLE, and their use of antirheumatic medications was lower. At the enrollment visit, more patients with probable SLE were positive for CB-CAPs (28%) or MAP (40%) than had low complement levels (9%) (P = 0.0001 for each). In probable SLE, MAP scores of >0.8 at enrollment predicted fulfillment of a fourth ACR criterion within 18 months (hazard ratio 3.11, P < 0.01).ConclusionComplement activation occurs in some patients with probable SLE and can be detected with higher frequency by evaluating CB-CAPs and MAP than by assessing traditional serum complement protein levels. A MAP score above 0.8 predicts transition to classifiable SLE according to ACR criteria

    The immune cell landscape in kidneys of patients with lupus nephritis.

    Get PDF
    Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies

    Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study

    Get PDF
    Objective: To identify a suitable dosing regimen of the CD22-targeted monoclonal antibody epratuzumab in adults with moderately to severely active systemic lupus erythematosus (SLE). Methods: A phase IIb, multicentre, randomised controlled study (NCT00624351) was conducted with 227 patients (37–39 per arm) receiving either: placebo, epratuzumab 200 mg cumulative dose (cd) (100 mg every other week (EOW)), 800 mg cd (400 mg EOW), 2400 mg cd (600 mg weekly), 2400 mg cd (1200 mg EOW), or 3600 mg cd (1800 mg EOW). The primary endpoint (not powered for significance) was the week 12 responder rate measured using a novel composite endpoint, the British Isles Lupus Assessment Group (BILAG)-based Combined Lupus Assessment (BICLA). Results: Proportion of responders was higher in all epratuzumab groups than with placebo (overall treatment effect test p=0.148). Exploratory pairwise analysis demonstrated clinical improvement in patients receiving a cd of 2400 mg epratuzumab (OR for 600 mg weekly vs placebo: 3.2 (95% CI 1.1 to 8.8), nominal p=0.03; OR for 1200 mg EOW vs placebo: 2.6 (0.9 to 7.1), nominal p=0.07). Post-hoc comparison of all 2400 mg cd patients versus placebo found an overall treatment effect (OR=2.9 (1.2 to 7.1), nominal p=0.02). Incidence of adverse events (AEs), serious AEs and infusion reactions was similar between epratuzumab and placebo groups, without decreases in immunoglobulin levels and only partial reduction in B-cell levels. Conclusions: Treatment with epratuzumab 2400 mg cd was well tolerated in patients with moderately to severely active SLE, and associated with improvements in disease activity. Phase III studies are ongoing

    The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases

    Get PDF
    Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes
    corecore