162 research outputs found
Analysis of the low-energy electron-recoil spectrum of the CDMS experiment
We report on the analysis of the low-energy electron-recoil spectrum from the
CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis
provides details on the observed counting rate and possible background sources
in the energy range of 2 - 8.5 keV. We find no significant excess in the
counting rate above background, and compare this observation to the recent DAMA
results. In the framework of a conversion of a dark matter particle into
electromagnetic energy, our 90% confidence level upper limit of 0.246
events/kg/day at 3.15 keV is lower than the total rate above background
observed by DAMA by 8.9. In absence of any specific particle physics
model to provide the scaling in cross section between NaI and Ge, we assume a
Z^2 scaling. With this assumption the observed rate in DAMA differs from the
upper limit in CDMS by 6.8. Under the conservative assumption that the
modulation amplitude is 6% of the total rate we obtain upper limits on the
modulation amplitude a factor of ~2 less than observed by DAMA, constraining
some possible interpretations of this modulation.Comment: 4 pages, 3 figure
Results from a Low-Energy Analysis of the CDMS II Germanium Data
We report results from a reanalysis of data from the Cryogenic Dark Matter
Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken
between October 2006 and September 2008 using eight germanium detectors are
reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased
sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs)
with masses below ~10 GeV/c^2. This analysis provides stronger constraints than
previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter
space associated with possible low-mass WIMP signals from the DAMA/LIBRA and
CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary
files. v3) Added appendix with additional details regarding energy scale and
background
Forward Neutron Production at the Fermilab Main Injector
We have measured cross sections for forward neutron production from a variety
of targets using proton beams from the Fermilab Main Injector. Measurements
were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c.
The cross section dependence on the atomic weight (A) of the targets was found
to vary as where is for a beam momentum of
58 GeV/c and 0.540.05 for 120 GeV/c. The cross sections show reasonable
agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made
with the LAQGSM Monte Carlo.Comment: Accepted for publication in Physical Review D. This version
incorporates small changes suggested by referee and small corrections in the
neutron production cross sections predicted by FLUK
Characterization of SuperCDMS 1-inch Ge Detectors
The newly commissioned SuperCDMS Soudan experiment aims to search for WIMP dark matter with a sensitivity to cross sections of 5×10^(−45)cm^2 and larger (90% CL upper limit). This goal is facilitated by a new set of germanium detectors, 2.5 times more massive than the ones used in the CDMS-II experiment, and with a different athermal phonon sensor layout that eliminates radial degeneracy in position reconstruction of high radius events. We present characterization data on these detectors, as well as improved techniques for correcting position-dependent variations in pulse shape across the detector. These improvements provide surface-event discrimination sufficient for a reach of 5×10^(−45)cm^2
Search for inelastic dark matter with the CDMS II experiment
Results are presented from a reanalysis of the entire five-tower data set
acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the
Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis
window was extended to a recoil energy of 150 keV, and an improved
surface-event background-rejection cut was defined to increase the sensitivity
of the experiment to the inelastic dark matter (iDM) model. Three dark matter
candidates were found between 25 keV and 150 keV. The probability to observe
three or more background events in this energy range is 11%. Because of the
occurrence of these events the constraints on the iDM parameter space are
slightly less stringent than those from our previous analysis, which used an
energy window of 10-100 keV.Comment: 10 pages, 10 figures, minor changes to match published version,
conclusion unchange
Outlier detection and classification in sensor data streams for proactive decision support systems
A paper has a deal with the problem of quality assessment in sensor data streams accumulated by proactive decision support systems. The new problem is stated where outliers need to be detected and to be classified according to their nature of origin. There are two types of outliers defined; the first type is about misoperations of a system and the second type is caused by changes in the observed system behavior due to inner and external influences. The proposed method is based on the data-driven forecast approach to predict the values in the incoming data stream at the expected time. This method includes the forecasting model and the clustering model. The forecasting model predicts a value in the incoming data stream at the expected time to find the deviation between a real observed value and a predicted one. The clustering method is used for taxonomic classification of outliers. Constructive neural networks models (CoNNS) and evolving connectionists systems (ECS) are used for prediction of sensors data. There are two real world tasks are used as case studies. The maximal values of accuracy are 0.992 and 0.974, and F1 scores are 0.967 and 0.938, respectively, for the first and the second tasks. The conclusion contains findings how to apply the proposed method in proactive decision support systems
CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment
SuperCDMS is an experiment designed to directly detect Weakly Interacting
Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in
the Universe. In this paper, we present WIMP-search results using a
calorimetric technique we call CDMSlite, which relies on voltage- assisted
Luke-Neganov amplification of the ionization energy deposited by particle
interactions. The data were collected with a single 0.6 kg germanium detector
running for 10 live days at the Soudan Underground Laboratory. A low energy
threshold of 170 eVee (electron equivalent) was obtained, which allows us to
constrain new WIMP-nucleon spin-independent parameter space for WIMP masses
below 6 GeV/c2.Comment: 7 pages, 4 figure
In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum
efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and
is of significant interest for future dark matter and neutrino experiments
where high signal yields are needed.
We report on the methods developed for in-situ characterization and
monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of
typical measured single-photoelectron charge distributions, correlated noise
(afterpulsing), dark noise, double, and late pulsing characteristics. The
characterization is performed during the detector commissioning phase using
laser light injected through a light diffusing sphere and during normal
detector operation using LED light injected through optical fibres
- …
