106 research outputs found
Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS
We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of Gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria
Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis
Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis
Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis
Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Å, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies
How Listeria monocytogenes organizes its surface for virulence
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work "behind the frontline", either supporting virulence effectors or ensuring the survival of the bacterium within its host.We apologize to authors whose relevant work could not be cited owing to space limitations. Research in the group of Molecular Microbiology is funded by the project "NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions" co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER), the Operational Competitiveness Programme (COMPETE) and FCT (Fundacdo para a Ciencia e Tecnologia), and by projects ERANet Pathogenomics LISTRESS ERA-PTG/0003/2010, PTDC/SAU-MIC/111581/2009FCOMP-FEDER, PTDC/BIA-BCM/100088/2008FCOMP-01-0124-FEDER-008860 and PTDC/BIA-BCM/111215/2009FCOMP-01-0124-FEDER-014178. Filipe Carvalho was supported by FCT doctoral grant SFRH1BD16182512009, and Sandra Sousa by the Ciencia 2008 and FCT-Investigator programs (COMPETE, POPH, and FCT)
Initial viral response is the most powerful predictor of the emergence of YMDD mutant virus in chronic hepatitis B patients treated with lamivudine
To be or not to be a compatible solute: Bioversatility of mannosylglycerate and glucosylglycerate
Mannosylglycerate (MG) is an intracellular organic solute found in some red algae, and several thermophilic bacteria and hyperthermophilic archaea. Glucosylglycerate (GG) was identified at the reducing end of a polysaccharide from mycobacteria and in a free form in a very few mesophilic bacteria and halophilic archaea. MG has a genuine role in the osmoadaptation and possibly in thermal protection of many hyper/thermophilic bacteria and archaea, but its role in red algae, where it was identified long before hyperthermophiles were even known to exist, remains to be clarified. The GG-containing polysaccharide was initially detected in Mycobacterium phlei and found to regulate fatty acid synthesis. More recently, GG has been found to be a major compatible solute under salt stress and nitrogen starvation in a few microorganisms. This review summarizes the occurrence and physiology of MG accumulation, as well as the distribution of GG, as a free solute or associated with larger macromolecules. We also focus on the recently identified pathways for the synthesis of both molecules, which were elucidated by studying hyper/thermophilic MG-accumulating organisms. The blooming era of genomics has now allowed the detection of these genes in fungi and mosses, opening a research avenue that spans the three domains of life, into the role of these two sugar derivatives.http://www.sciencedirect.com/science/article/B7GVX-4SWP1Y0-1/1/21fa8b34b94c7aee64e8337e26bd247
Biosynthesis of the mycobacterial O-methylglucose lipopolysaccharide. Characterization of putative intermediates in the initiation, elongation, and termination reactions.
Enzyme immunoassay of teichoic acids from Listeria monocytogenes
Amino groups were introduced into Listeria monocytogenes teichoic acids by reductive amination, and the product was coupled to biotin. Teichoic acids were assayed by their binding to specific antibody adsorbed to a solid phase, followed by detection of the antigen-antibody complex by horseradish peroxidase-avidin. Less than 20 ng of teichoic acid was detectable.</jats:p
- …
