470 research outputs found
Visual distortion of body size modulates pain perception
Pain is a complex subjective experience, that can be shaped by several cognitive, psychological and even contextual variables. For example, simply viewing the body reduces the reported intensity of acute physical pain. We investigated whether this visually induced analgesia can be modulated by the visually depicted size of the stimulated body part. We measured contact heat-pain thresholds, while participants viewed either their own hand or a neutral object, at real size, enlarged, or reduced. Vision of the body was analgesic, increasing heat-pain thresholds by ~ 4°C. Importantly, enlargement of the viewed hand enhanced this analgesia, while looking at a reduced hand decreased it. These results demonstrate that visual distortions of body size modulate sensory components of pain, and reveal a clear functional relation between the perception of pain and the representation of the body
Specificity and coherence of body representations
Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole
Small-scale patterning methods for digital image correlation under scanning electron microscopy
Digital image correlation (DIC) is a powerful, length-scale-independent methodology for examining full-field surface deformations. Recently, it has become possible to combine DIC with scanning electron microscopy (SEM), enabling the investigation of small-scale deformation mechanisms such as the strains accommodated within grains in polycrystalline metals, or around micro-scale constituents in composite materials. However, there exist significant challenges that need to be surmounted before the combination of DIC and SEM (here termed SEM-DIC) can be fully exploited. One of the primary challenges is the ability to pattern specimens at microstructural length scales with a random, isotropic and high contrast pattern needed for DIC. This paper provides a thorough survey of small-scale patterning methods for SEM-DIC and discusses their advantages and disadvantages for different applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90784/1/0957-0233_22_12_125501.pd
Титульні сторінки та зміст
It has recently been shown that contact between one’s own limbs (self-touch) reduces the perceived intensity of pain, over and above the well-known modulation of pain by simultaneous colocalized tactile input Kammers et al. (Curr Biol 20:1819–1822, 2010). Here, we investigate how self-touch modulates somatosensory evoked potentials (SEPs) evoked by afferent somatosensory input. We show that the P100 SEP component, which has previously been implicated in the conscious perception of a tactile stimulus, is enhanced during self-touch, as compared to when one is touching nothing, an inanimate object, or another person. A follow-up experiment showed that there was no effect of self-touch on SEPs when the body parts in contact were not symmetric. Altogether, our findings suggest the interpretation that the secondary somatosensory cortex might underlie the specific analgesic effect of self-touch
One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strain in-situ multi-microscopy testing
Digital Image Correlation (DIC) is of vital importance in the field of
experimental mechanics, yet, producing suitable DIC patterns for demanding
in-situ mechanical tests remains challenging, especially for ultra-fine
patterns, despite the large number of patterning techniques in the literature.
Therefore, we propose a simple, flexible, one-step technique (only requiring a
conventional deposition machine) to obtain scalable, high-quality, robust DIC
patterns, suitable for a range of microscopic techniques, by deposition of a
low melting temperature solder alloy in so-called 'island growth' mode, without
elevating the substrate temperature. Proof of principle is shown by
(near-)room-temperature deposition of InSn patterns, yielding highly dense,
homogeneous DIC patterns over large areas with a feature size that can be tuned
from as small as 10nm to 2um and with control over the feature shape and
density by changing the deposition parameters. Pattern optimization, in terms
of feature size, density, and contrast, is demonstrated for imaging with atomic
force microscopy, scanning electron microscopy (SEM), optical microscopy and
profilometry. Moreover, the performance of the InSn DIC patterns and their
robustness to large deformations is validated in two challenging case studies
of in-situ micro-mechanical testing: (i) self-adaptive isogeometric digital
height correlation of optical surface height profiles of a coarse, bimodal InSn
pattern providing microscopic 3D deformation fields (illustrated for
delamination of aluminum interconnects on a polyimide substrate) and (ii) DIC
on SEM images of a much finer InSn pattern allowing quantification of high
strains near fracture locations (illustrated for rupture of a Fe foil). As
such, the high controllability, performance and scalability of the DIC patterns
offers a promising step towards more routine DIC-based in-situ micro-mechanical
testing.Comment: Accepted for publication in Strai
A new near-IR window of low extinction in the Galactic plane
Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO. Comments: 6 pages, 6 figures. Accepted for publication in Astronomy & AstrophysicsAims. The windows of low extinction in the Milky Way (MW) plane are rare but important because they enable us to place structural constraints on the opposite side of the Galaxy, which has hither to been done rarely. Methods. We use the near-infrared (near-IR) images of the VISTA Variables in the Vía Láctea (VVV) Survey to build extinction maps and to identify low extinction windows towards the Southern Galactic plane. Here we report the discovery of VVV WIN 1713-3939, a very interesting window with relatively uniform and low extinction conveniently placed very close to the Galactic plane. Results. The new window of roughly 30 arcmin diameter is located at Galactic coordinates (l, b) = (347.4, -0.4) deg. We analyse the VVV near-IR colour-magnitude diagrams in this window. The mean total near-IR extinction and reddening values measured for this window are A Ks = 0.46 and E(J - K s) = 0.95. The red clump giants within the window show a bimodal magnitude distribution in the K s band, with peaks at K s = 14.1 and 14.8 mag, corresponding to mean distances of D = 11.0 ± 2.4 and 14.8 ± 3.6 kpc, respectively. We discuss the origin of these red clump overdensities within the context of the MW disk structure.Peer reviewe
Survival models with preclustered gene groups as covariates
An important application of high dimensional gene expression measurements is the risk prediction
and the interpretation of the variables in the resulting survival models. A major problem in this context is the
typically large number of genes compared to the number of observations (individuals). Feature selection
procedures can generate predictive models with high prediction accuracy and at the same time low model
complexity. However, interpretability of the resulting models is still limited due to little knowledge on many of
the remaining selected genes. Thus, we summarize genes as gene groups defined by the hierarchically structured
Gene Ontology (GO) and include these gene groups as covariates in the hazard regression models. Since
expression profiles within GO groups are often heterogeneous, we present a new method to obtain subgroups
with coherent patterns. We apply preclustering to genes within GO groups according to the correlation of their
gene expression measurements
Пам’яті Ірини Миколаївни Алексєєвої
На 77-му ропі життя, 9 лютого 2011 р. відійшла від нас знана і шанована людина, доктор біологічних наук, завідувач відділу імунології і цитотоксичних сироваток Інституту фізіології ім. О.О. Богомольця НАН України, Ірина Миколаївна Алексєєва
<i>In situ</i> observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel
To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation
Implicit body representations and the conscious body image
Recent studies have revealed that somatosensory processing relies on a class of implicit body representations showing large distortions of size and shape. The relation between these representations and the conscious body image remains unclear. Dissociations have been reported in the clinical literature on eating disorders between different body image measures, with larger and more consistent distortions found with depictive measures, in which participants compare their body to a visual depiction of a body, than metric measures, in which participants compare their body to some non-body standard. Here, we compared implicit body representations underlying position sense to the body image measured with both depictive and metric methods. The body image was measured using both a depictive method (template matching) in which participants judged whether their hand was wider or more slender than a shown hand picture, and a metric method (line length) in which participants judged whether different parts of the their hand were shorter or longer than a presented line. Consistent with previous findings, characteristic distortions were found for the implicit body representation underlying position sense. These distortions were also found in attenuated form for metric – but not depictive – body image measures. While replicating the basic dissociation between implicit body representations and the conscious body image, these results demonstrate that this dissociation is not absolute and specific tasks may utilise both to varying degrees depending on task demands. Metric measures may not be pure measures of body image, but some combination of visual and somatosensory body representations
- …
