497 research outputs found
Distinct contribution of IL-6, TNF-α, IL-1, and IL-10 to T cell–mediated spontaneous autoimmune arthritis in mice
Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study
A critical time window of Sry action in gonadal sex determination in mice
In mammals, the Y-linked sex-determining gene Sry cell-autonomously promotes Sertoli cell differentiation from bipotential supporting cell precursors through SRY-box containing gene 9 (Sox9), leading to testis formation. Without Sry action, the supporting cells differentiate into granulosa cells, resulting in ovarian development. However, how Sry acts spatiotemporally to switch supporting cells from the female to the male pathway is poorly understood. We created a novel transgenic mouse line bearing an inducible Sry transgene under the control of the Hsp70.3 promoter. Analysis of these mice demonstrated that the ability of Sry to induce testis development is limited to approximately 11.0-11.25 dpc, corresponding to a time window of only 6 hours after the normal onset of Sry expression in XY gonads. If Sry was activated after 11.3 dpc, Sox9 activation was not maintained, resulting in ovarian development. This time window is delimited by the ability to engage the high-FGF9/low-WNT4 signaling states required for Sertoli cell establishment and cord organization. Our results indicate the overarching importance of Sry action in the initial 6-hour phase for the female-to-male switching of FGF9/WNT4 signaling patterns
Nr5a1 suppression during the murine fetal period optimizes ovarian development by fine-tuning Notch signaling
The nuclear receptor NR5A1 is equally expressed and required for development of the gonadal primordia of both sexes, but, after sex determination, it is upregulated in XY testes and downregulated in XX ovaries. We have recently demonstrated, in mice, that this downregulation is mediated by forkhead box L2 (FOXL2) and hypothesized that adequate suppression of Nr5a1 is essential for normal ovarian development. Further, analysis of human patients with disorders/differences of sex development suggests that overexpression of NR5A1 can result in XX (ovo)testicular development. Here, we tested the role of Nr5a1 by overexpression in fetal gonads using a Wt1-BAC (bacterial artificial chromosome) transgene system. Enforced Nr5a1 expression compromised ovarian development in 46,XX mice, resulting in late-onset infertility, but did not induce (ovo)testis differentiation. The phenotype was similar to that of XX mice lacking Notch signaling. The expression level of Notch2 was significantly reduced in Nr5a1 transgenic mice, and the ovarian phenotype was almost completely rescued by in utero treatment with a NOTCH2 agonist. We conclude that suppression of Nr5a1 during the fetal period optimizes ovarian development by finetuning Notch signaling
<i>Sox17</i> haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice
Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute ‘embryonic hepatitis’, leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17+/− B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17+/− gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.</jats:p
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Genetic targeting of the endoderm with claudin-6CreER
A full description of the ontogeny of the β cell would guide efforts to generate β cells from embryonic stem cells (ESCs). The first step requires an understanding of definitive endoderm: the genes and signals responsible for its specification, proliferation, and patterning. This report describes a global marker of definitive endoderm, Claudin-6 (Cldn6). We report its expression in early development with particular attention to definitive endoderm derivatives. To create a genetic system to drive gene expression throughout the definitive endoderm with both spatial and temporal control, we target the endogenous locus with an inducible Cre recombinase (Cre-ERT2) cassette. Cldn6 null mice are viable and fertile with no obvious phenotypic abnormalities. We also report a lineage analysis of the fate of Cldn6-expressing embryonic cells, which is relevant to the development of the pancreas, lung, and liver
Concise review:programming human pluripotent stem cells into blood
Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion‐transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long‐term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future
- …
