435 research outputs found
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
GNL3L stabilizes the TRF1 complex and promotes mitotic transition
Telomeric repeat binding factor 1 (TRF1) is a component of the multiprotein complex “shelterin,” which organizes the telomere into a high-order structure. TRF1 knockout embryos suffer from severe growth defects without apparent telomere dysfunction, suggesting an obligatory role for TRF1 in cell cycle control. To date, the mechanism regulating the mitotic increase in TRF1 protein expression and its function in mitosis remains unclear. Here, we identify guanine nucleotide-binding protein-like 3 (GNL3L), a GTP-binding protein most similar to nucleostemin, as a novel TRF1-interacting protein in vivo. GNL3L binds TRF1 in the nucleoplasm and is capable of promoting the homodimerization and telomeric association of TRF1, preventing promyelocytic leukemia body recruitment of telomere-bound TRF1, and stabilizing TRF1 protein by inhibiting its ubiquitylation and binding to FBX4, an E3 ubiquitin ligase for TRF1. Most importantly, the TRF1 protein-stabilizing activity of GNL3L mediates the mitotic increase of TRF1 protein and promotes the metaphase-to-anaphase transition. This work reveals novel aspects of TRF1 modulation by GNL3L
Prevalence and Molecular Characterization of Cyclospora cayetanensis, Henan, China
To determine prevalence of Cyclospora cayetanensis infection in Henan, China, we conducted a study of 11,554 hospital patients. Prevalence was 0.70% (95% confidence interval 0.70% ± 0.15%), with all age groups infected. Most cases were found in the summer. Minor sequence polymorphisms were observed in the 18S rRNA gene of 35 isolates characterized
Aurora kinase-C-T191D is constitutively active mutant
<p>Abstract</p> <p>Background</p> <p>Aurora kinases (Aurora-A, B and C) belong to a family of conserved serine/threonine kinases which are key regulators of cell cycle progression. Aurora-A and Aurora-B are expressed in somatic cells and involved in cell cycle regulation while aurora-C is meiotic chromosome passenger protein. As Aurora kinase C is rarely expressed in normal somatic cells and has been found over expressed in many cancer lines. It is suggested that Aurora-C-T191D is not hyperactive mutant.</p> <p>Result</p> <p>Aurora-C-T191D variant form was investigated and compared with wild type. The overexpression of Aurora-C-T191D was observed that it behaves like Aurora-C wild type (aurC-WT). Both Aurora-C-T191D and aurC-WT induce abnormal cell division resulting in centrosome amplification and multinucleation in transiently transfected cells as well as in stable cell lines. Similarly, Aurora-C-T191D and aurC-WT formed foci of colonies when grown on soft agar, indicating that a gain of Aurora-C activity is sufficient to transform cells. Furthermore, we reported that NIH-3 T3 stable cell lines overexpressing Aurora-C-T191D and its wild type partner induced tumour formation when injected into nude mice, demonstrating the oncogenic activity of enzymatically active Aurora kinase C. Interestingly enough tumour aggressiveness was positively correlated with the rate of kinase activity, making Aurora-C a potential anti-cancer therapeutic target.</p> <p>Conclusion</p> <p>These findings proved that Aurora C-T191D is not hyperactive but is constitutively active mutant.</p
Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome
Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only approximately 30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to approximately 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies
A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling
Funding Information: Acknowledgments We thank Dr. Tsuyoshi Nakagawa (Shimane University) for the gift of the gateway vectors, pGWB2, pGWB80, pGWB5, and pGWB3. This work was supported in part by funding from the Program for Promotion of Basic Research Activities for Innovation Bioscience (PROBRAIN) to T.N. and T.A., and CREST, Japan Science and Technology Agency to T.N. and T.A.Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.Peer reviewe
Dehydrocostuslactone Suppresses Angiogenesis In Vitro and In Vivo through Inhibition of Akt/GSK-3β and mTOR Signaling Pathways
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer
Investigating Population Genetic Structure in a Highly Mobile Marine Organism: The Minke Whale Balaenoptera acutorostrata acutorostrata in the North East Atlantic
Inferring the number of genetically distinct populations and their levels of connectivity is of key importance for the sustainable management and conservation of wildlife. This represents an extra challenge in the marine environment where there are few physical barriers to gene-flow, and populations may overlap in time and space. Several studies have investigated the population genetic structure within the North Atlantic minke whale with contrasting results. In order to address this issue, we analyzed ten microsatellite loci and 331 bp of the mitochondrial D-loop on 2990 whales sampled in the North East Atlantic in the period 2004 and 2007–2011. The primary findings were: (1) No spatial or temporal genetic differentiations were observed for either class of genetic marker. (2) mtDNA identified three distinct mitochondrial lineages without any underlying geographical pattern. (3) Nuclear markers showed evidence of a single panmictic population in the NE Atlantic according STRUCTURE's highest average likelihood found at K = 1. (4) When K = 2 was accepted, based on the Evanno's test, whales were divided into two more or less equally sized groups that showed significant genetic differentiation between them but without any sign of underlying geographic pattern. However, mtDNA for these individuals did not corroborate the differentiation. (5) In order to further evaluate the potential for cryptic structuring, a set of 100 in silico generated panmictic populations was examined using the same procedures as above showing genetic differentiation between two artificially divided groups, similar to the aforementioned observations. This demonstrates that clustering methods may spuriously reveal cryptic genetic structure. Based upon these data, we find no evidence to support the existence of spatial or cryptic population genetic structure of minke whales within the NE Atlantic. However, in order to conclusively evaluate population structure within this highly mobile species, more markers will be required
- …
