27,302 research outputs found

    A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length

    Get PDF
    We develop a pseudorandom generator that fools degree-dd polynomial threshold functions in nn variables with respect to the Gaussian distribution and has seed length Oc,d(log(n)ϵc)O_{c,d}(\log(n) \epsilon^{-c})

    A Polylogarithmic PRG for Degree 22 Threshold Functions in the Gaussian Setting

    Get PDF
    We devise a new pseudorandom generator against degree 2 polynomial threshold functions in the Gaussian setting. We manage to achieve ϵ\epsilon error with seed length polylogarithmic in ϵ\epsilon and the dimension, and exponential improvement over previous constructions

    The Correct Exponent for the Gotsman-Linial Conjecture

    Get PDF
    We prove a new bound on the average sensitivity of polynomial threshold functions. In particular we show that a polynomial threshold function of degree dd in at most nn variables has average sensitivity at most n(log(n))O(dlog(d))2O(d2log(d)\sqrt{n}(\log(n))^{O(d\log(d))}2^{O(d^2\log(d)}. For fixed dd the exponent in terms of nn in this bound is known to be optimal. This bound makes significant progress towards the Gotsman-Linial Conjecture which would put the correct bound at Θ(dn)\Theta(d\sqrt{n})

    On the Number of ABC Solutions with Restricted Radical Sizes

    Full text link
    We consider a variant of the ABC Conjecture, attempting to count the number of solutions to A+B+C=0A+B+C=0, in relatively prime integers A,B,CA,B,C each of absolute value less than NN with r(A)<Aa,r(B)<Bb,r(C)<Cc.r(A)<|A|^a, r(B)<|B|^b, r(C)<|C|^c. The ABC Conjecture is equivalent to the statement that for a+b+c<1a+b+c<1, the number of solutions is bounded independently of NN. If a+b+c1a+b+c \geq 1, it is conjectured that the number of solutions is asymptotically Na+b+c1±ϵ.N^{a+b+c-1 \pm \epsilon}. We prove this conjecture as long as $a+b+c \geq 2.

    The Average Sensitivity of an Intersection of Half Spaces

    Get PDF
    We prove new bounds on the average sensitivity of the indicator function of an intersection of kk halfspaces. In particular, we prove the optimal bound of O(nlog(k))O(\sqrt{n\log(k)}). This generalizes a result of Nazarov, who proved the analogous result in the Gaussian case, and improves upon a result of Harsha, Klivans and Meka. Furthermore, our result has implications for the runtime required to learn intersections of halfspaces

    Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

    Full text link
    In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. \bullet We prove that for all ϵlog(n)/n\epsilon\gg \sqrt{\log(n)/n}, the linear-time computable Andreev's function cannot be computed on a (1/2+ϵ)(1/2+\epsilon)-fraction of nn-bit inputs by depth-two linear threshold circuits of o(ϵ3n3/2/log3n)o(\epsilon^3 n^{3/2}/\log^3 n) gates, nor can it be computed with o(ϵ3n5/2/log7/2n)o(\epsilon^{3} n^{5/2}/\log^{7/2} n) wires. This establishes an average-case ``size hierarchy'' for threshold circuits, as Andreev's function is computable by uniform depth-two circuits of o(n3)o(n^3) linear threshold gates, and by uniform depth-three circuits of O(n)O(n) majority gates. \bullet We present a new function in PP based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two linear threshold circuits with o(n3/2/log3n)o(n^{3/2}/\log^3 n) gates, nor with o(n5/2/log7/2n)o(n^{5/2}/\log^{7/2}n) wires. \bullet We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics
    corecore