27,302 research outputs found
A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length
We develop a pseudorandom generator that fools degree- polynomial
threshold functions in variables with respect to the Gaussian distribution
and has seed length
A Polylogarithmic PRG for Degree Threshold Functions in the Gaussian Setting
We devise a new pseudorandom generator against degree 2 polynomial threshold
functions in the Gaussian setting. We manage to achieve error with
seed length polylogarithmic in and the dimension, and exponential
improvement over previous constructions
The Correct Exponent for the Gotsman-Linial Conjecture
We prove a new bound on the average sensitivity of polynomial threshold
functions. In particular we show that a polynomial threshold function of degree
in at most variables has average sensitivity at most
. For fixed the exponent
in terms of in this bound is known to be optimal. This bound makes
significant progress towards the Gotsman-Linial Conjecture which would put the
correct bound at
On the Number of ABC Solutions with Restricted Radical Sizes
We consider a variant of the ABC Conjecture, attempting to count the number
of solutions to , in relatively prime integers each of
absolute value less than with The ABC
Conjecture is equivalent to the statement that for , the number of
solutions is bounded independently of . If , it is conjectured
that the number of solutions is asymptotically We
prove this conjecture as long as $a+b+c \geq 2.
The Average Sensitivity of an Intersection of Half Spaces
We prove new bounds on the average sensitivity of the indicator function of
an intersection of halfspaces. In particular, we prove the optimal bound of
. This generalizes a result of Nazarov, who proved the
analogous result in the Gaussian case, and improves upon a result of Harsha,
Klivans and Meka. Furthermore, our result has implications for the runtime
required to learn intersections of halfspaces
Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits
In order to formally understand the power of neural computing, we first need
to crack the frontier of threshold circuits with two and three layers, a regime
that has been surprisingly intractable to analyze. We prove the first
super-linear gate lower bounds and the first super-quadratic wire lower bounds
for depth-two linear threshold circuits with arbitrary weights, and depth-three
majority circuits computing an explicit function.
We prove that for all , the
linear-time computable Andreev's function cannot be computed on a
-fraction of -bit inputs by depth-two linear threshold
circuits of gates, nor can it be computed with
wires. This establishes an average-case
``size hierarchy'' for threshold circuits, as Andreev's function is computable
by uniform depth-two circuits of linear threshold gates, and by
uniform depth-three circuits of majority gates.
We present a new function in based on small-biased sets, which
we prove cannot be computed by a majority vote of depth-two linear threshold
circuits with gates, nor with
wires.
We give tight average-case (gate and wire) complexity results for
computing PARITY with depth-two threshold circuits; the answer turns out to be
the same as for depth-two majority circuits.
The key is a new random restriction lemma for linear threshold functions. Our
main analytical tool is the Littlewood-Offord Lemma from additive
combinatorics
- …
