3,892 research outputs found
A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length
We develop a pseudorandom generator that fools degree- polynomial
threshold functions in variables with respect to the Gaussian distribution
and has seed length
A Polylogarithmic PRG for Degree Threshold Functions in the Gaussian Setting
We devise a new pseudorandom generator against degree 2 polynomial threshold
functions in the Gaussian setting. We manage to achieve error with
seed length polylogarithmic in and the dimension, and exponential
improvement over previous constructions
The Correct Exponent for the Gotsman-Linial Conjecture
We prove a new bound on the average sensitivity of polynomial threshold
functions. In particular we show that a polynomial threshold function of degree
in at most variables has average sensitivity at most
. For fixed the exponent
in terms of in this bound is known to be optimal. This bound makes
significant progress towards the Gotsman-Linial Conjecture which would put the
correct bound at
On the Number of ABC Solutions with Restricted Radical Sizes
We consider a variant of the ABC Conjecture, attempting to count the number
of solutions to , in relatively prime integers each of
absolute value less than with The ABC
Conjecture is equivalent to the statement that for , the number of
solutions is bounded independently of . If , it is conjectured
that the number of solutions is asymptotically We
prove this conjecture as long as $a+b+c \geq 2.
The Average Sensitivity of an Intersection of Half Spaces
We prove new bounds on the average sensitivity of the indicator function of
an intersection of halfspaces. In particular, we prove the optimal bound of
. This generalizes a result of Nazarov, who proved the
analogous result in the Gaussian case, and improves upon a result of Harsha,
Klivans and Meka. Furthermore, our result has implications for the runtime
required to learn intersections of halfspaces
A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut
We give improved pseudorandom generators (PRGs) for Lipschitz functions of
low-degree polynomials over the hypercube. These are functions of the form
psi(P(x)), where P is a low-degree polynomial and psi is a function with small
Lipschitz constant. PRGs for smooth functions of low-degree polynomials have
received a lot of attention recently and play an important role in constructing
PRGs for the natural class of polynomial threshold functions. In spite of the
recent progress, no nontrivial PRGs were known for fooling Lipschitz functions
of degree O(log n) polynomials even for constant error rate. In this work, we
give the first such generator obtaining a seed-length of (log
n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps.
Previous generators had an exponential dependence on the degree.
We use our PRG to get better integrality gap instances for sparsest cut, a
fundamental problem in graph theory with many applications in graph
optimization. We give an instance of uniform sparsest cut for which a powerful
semi-definite relaxation (SDP) first introduced by Goemans and Linial and
studied in the seminal work of Arora, Rao and Vazirani has an integrality gap
of exp(\Omega((log log n)^{1/2})). Understanding the performance of the
Goemans-Linial SDP for uniform sparsest cut is an important open problem in
approximation algorithms and metric embeddings and our work gives a
near-exponential improvement over previous lower bounds which achieved a gap of
\Omega(log log n)
On the Ranks of the 2-Selmer Groups of Twists of a Given Elliptic Curve
We extend work of Swinnerton-Dyer on the density of the number of twists of a
given elliptic curve that have 2-Selmer group of a particular rank
- …
