3,892 research outputs found

    A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length

    Get PDF
    We develop a pseudorandom generator that fools degree-dd polynomial threshold functions in nn variables with respect to the Gaussian distribution and has seed length Oc,d(log(n)ϵc)O_{c,d}(\log(n) \epsilon^{-c})

    A Polylogarithmic PRG for Degree 22 Threshold Functions in the Gaussian Setting

    Get PDF
    We devise a new pseudorandom generator against degree 2 polynomial threshold functions in the Gaussian setting. We manage to achieve ϵ\epsilon error with seed length polylogarithmic in ϵ\epsilon and the dimension, and exponential improvement over previous constructions

    The Correct Exponent for the Gotsman-Linial Conjecture

    Get PDF
    We prove a new bound on the average sensitivity of polynomial threshold functions. In particular we show that a polynomial threshold function of degree dd in at most nn variables has average sensitivity at most n(log(n))O(dlog(d))2O(d2log(d)\sqrt{n}(\log(n))^{O(d\log(d))}2^{O(d^2\log(d)}. For fixed dd the exponent in terms of nn in this bound is known to be optimal. This bound makes significant progress towards the Gotsman-Linial Conjecture which would put the correct bound at Θ(dn)\Theta(d\sqrt{n})

    On the Number of ABC Solutions with Restricted Radical Sizes

    Full text link
    We consider a variant of the ABC Conjecture, attempting to count the number of solutions to A+B+C=0A+B+C=0, in relatively prime integers A,B,CA,B,C each of absolute value less than NN with r(A)<Aa,r(B)<Bb,r(C)<Cc.r(A)<|A|^a, r(B)<|B|^b, r(C)<|C|^c. The ABC Conjecture is equivalent to the statement that for a+b+c<1a+b+c<1, the number of solutions is bounded independently of NN. If a+b+c1a+b+c \geq 1, it is conjectured that the number of solutions is asymptotically Na+b+c1±ϵ.N^{a+b+c-1 \pm \epsilon}. We prove this conjecture as long as $a+b+c \geq 2.

    The Average Sensitivity of an Intersection of Half Spaces

    Get PDF
    We prove new bounds on the average sensitivity of the indicator function of an intersection of kk halfspaces. In particular, we prove the optimal bound of O(nlog(k))O(\sqrt{n\log(k)}). This generalizes a result of Nazarov, who proved the analogous result in the Gaussian case, and improves upon a result of Harsha, Klivans and Meka. Furthermore, our result has implications for the runtime required to learn intersections of halfspaces

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)

    On the Ranks of the 2-Selmer Groups of Twists of a Given Elliptic Curve

    Full text link
    We extend work of Swinnerton-Dyer on the density of the number of twists of a given elliptic curve that have 2-Selmer group of a particular rank
    corecore