28 research outputs found

    Rhamnolipids: diversity of structures, microbial origins and roles

    Get PDF
    Rhamnolipids are glycolipidic biosurfactants produced by various bacterial species. They were initially found as exoproducts of the opportunistic pathogen Pseudomonas aeruginosa and described as a mixture of four congeners: α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-Rha-C10-C10), α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoate (Rha-Rha-C10), as well as their mono-rhamnolipid congeners Rha-C10-C10 and Rha-C10. The development of more sensitive analytical techniques has lead to the further discovery of a wide diversity of rhamnolipid congeners and homologues (about 60) that are produced at different concentrations by various Pseudomonas species and by bacteria belonging to other families, classes, or even phyla. For example, various Burkholderia species have been shown to produce rhamnolipids that have longer alkyl chains than those produced by P. aeruginosa. In P. aeruginosa, three genes, carried on two distinct operons, code for the enzymes responsible for the final steps of rhamnolipid synthesis: one operon carries the rhlAB genes and the other rhlC. Genes highly similar to rhlA, rhlB, and rhlC have also been found in various Burkholderia species but grouped within one putative operon, and they have been shown to be required for rhamnolipid production as well. The exact physiological function of these secondary metabolites is still unclear. Most identified activities are derived from the surface activity, wetting ability, detergency, and other amphipathic-related properties of these molecules. Indeed, rhamnolipids promote the uptake and biodegradation of poorly soluble substrates, act as immune modulators and virulence factors, have antimicrobial activities, and are involved in surface motility and in bacterial biofilm development

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    K<sub>V</sub>7.1 channel blockade inhibits neonatal renal autoregulation triggered by a step decrease in arterial pressure

    Full text link
    KV7.1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. KV7.1 is functionally expressed in neonatal pig renal vascular smooth muscle cells (SMCs). A decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs. Although SMC KV7.1 does not control basal renal vascular resistance, its inhibition blunts neonatal renal autoregulation engendered by a step decrease in arterial pressure. </jats:p

    Effect of salmeterol on human nasal epithelial cell ciliary beating: inhibition of the ciliotoxin, pyocyanin.

    No full text
    1. Patients with airway infection by Pseudomonas aeruginosa have impaired mucociliary clearance. Pyocyanin is a phenazine pigment produced by P. aeruginosa which is present in the sputum of colonized patients, slows human ciliary beat frequency (CBF) in vitro and slows mucociliary transport in vivo in the guinea-pig. 2. We have investigated the effect of salmeterol, a long-acting beta 2-adrenoceptor agonist, on pyocyanin-induced slowing of human CBF in vitro. Salmeterol (2 x 10(-7) M) was found to reduce pyocycanin (20 micrograms ml-1)-induced slowing of CBF by 53% and the fall in intracellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) by 26% and ATP by 29%. 3. Another beta 2-adrenoceptor agonist, isoprenaline (2 x 10(-7) M), also inhibited pyocyanin-induced slowing of CBF by 39%. 4. The effects of salmeterol (30 min preincubation) persisted after washing the cells. 5. Propranolol (10(-7) M) and the beta 2-specific antagonist, ICI 118551 (10(-6) M) blocked the protective effects of salmeterol completely, but atenolol (10(-6) M) was less effective. These results suggested that the effects of salmeterol on pyocyanin-induced effects were mediated primarily via the stimulation of beta 2-adrenoceptors. 6. Pyocyanin-induced ciliary slowing is associated with a substantial fall in intracellular cyclic AMP and ATP. Salmeterol reversed the effects of pyocyanin on cyclic AMP and ATP. 7. Mucociliary clearance is an important defence mechanism of the airways against bacterial infection. Salmeterol may benefit patients colonized by P. aeruginosa, not only by its bronchodilator action, but also by protecting epithelial cells from pyocyanin-induced slowing of CBF

    Inherent Differences in Nasal and Tracheal Ciliary Function in Response to Pseudomonas aeruginosa

    No full text
    Background: Sinonasal mucosal biofilms are recognized as contributors to the pathogenesis of chronic rhinosinusitis (CRS). Attachment of bacteria to the sinonasal surface is an initial step in biofilm formation. A critical defense against this occurrence is mucociliary clearance (MCC). To ascertain whether the ciliary component of MCC is uniform throughout the airway we compared ciliary beat frequency (CBF) in the murine nasal septum and trachea at baseline and after challenge with Pseudomonas aeruginosa, a common pathogen of CRS.Methods: Murine septal and tracheal air-liquid interface cultures were evaluated for basal and stimulated CBF after exposure to control or conditioned media from Pseudomonas. Additionally, the attachment of Pseudomonas to nasal and tracheal cultures was assessed after pretreatment with control or conditioned media.Results: Basal CBF is significantly slower in primary nasal airway cultures compared with tracheal airway cultures. Tracheal airway cultures show resistance to Pseudomonas secreted ciliotoxins not evident in nasal septal cultures. Furthermore, after challenge with viable Pseudomonas, significantly more bacteria attach to the nasal cultures compared with the tracheal cultures.Conclusion: Using primary murine nasal and tracheal airway cultures we show inherent differences in cilia function and increased susceptibility of the upper airway to attachment by Pseudomonas. Understanding the differences between upper and subglottic airway mucociliary clearance should lead to novel approaches in the management of upper airway infection. (Am J Rhinol Allergy 25, 209-213, 2011; doi: 10.2500/ajra.2011.25.3614

    Mechanisms of action of Pseudomonas aeruginosa pyocyanin on human ciliary beat in vitro

    Full text link
    Pyocyanin is a blue redox active pigment produced by Pseudomonas aeruginosa. It is present at concentrations of up to 10(-4) M in sputa from patients with cystic fibrosis and bronchiectasis who are heavily colonized with this organism. Pyocyanin, at physiologically relevant concentrations, slows human nasal ciliary beat frequency (CBF) in vitro and leads to disruption of the epithelium. Pyocyanin-induced slowing of CBF after 2 h was associated with a significant fall in intracellular cyclic AMP (cAMP) (90%) and ATP (66%) and was reversible after the pyocyanin was removed by washing. These effects were not mediated through interaction with neutrophils. The pyocyanin-induced fall in CBF was not affected by EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], pyrazinamide, 8-phenyltheophylline, indomethacin, or antioxidants, including catalase (500 U/ml), superoxide dismutase, and N-acetylcysteine. Ciliary slowing was, however, prevented (&gt; 70%) by isobutylmethylxanthine and forskolin, both of which increase intracellular cAMP, and also by the cAMP analog, dibutyryl cAMP. There was also a concomitant protection against the fall in both cAMP and ATP. These agents also delayed the onset of epithelial disruption associated with pyocyanin treatment. In contrast, treatment with the iron chelator desferrioxamine prevented epithelial disruption, although it had no effect on pyocyanin-induced slowing of CBF. It appears that ciliary slowing can be dissociated from epithelial disruption and that the effects of pyocyanin on CBF are associated with a fall in both intracellular cAMP and ATP.</jats:p
    corecore