642 research outputs found
X-ray measured metallicities of the intra-cluster medium: a good measure for the metal mass?
Aims. We investigate whether X-ray observations map heavy elements in the
Intra-Cluster Medium (ICM) well and whether the X-ray observations yield good
estimates for the metal mass, with respect to predictions on transport mech-
anisms of heavy elements from galaxies into the ICM. We further test the
accuracy of simulated metallicity maps. Methods. We extract synthetic X-ray
spectra from N-body/hydrodynamic simulations including metal enrichment pro-
cesses, which we then analyse with the same methods as are applied to
observations. By changing the metal distribution in the simulated galaxy
clusters, we investigate the dependence of the overall metallicity as a
function of the metal distribution. In addition we investigate the difference
of X-ray weighted metal maps produced by simulations and metal maps extracted
from artifcial X-ray spectra, which we calculate with SPEX2.0 and analyse with
XSPEC12.0. Results. The overall metallicity depends strongly on the
distribution of metals within the galaxy cluster. The more inhomogeneously the
metals are distributed within the cluster, the less accurate is the metallicity
as a measure for the true metal mass. The true metal mass is generally
underestimated by X-ray observations. The difference between the X-ray weighted
metal maps and the metal maps from synthetic X-ray spectra is on average less
than 7% in the temperature regime above T > 3E7 K, i.e. X-ray weighted metal
maps can be well used for comparison with observed metal maps. Extracting the
metal mass in the central parts (r < 500 kpc) of galaxy clusters with X-ray
observations results in metal mass underestimates up to a factor of three.Comment: 7 pages, 9 figures, accepted for publication in A&
Internal kinematics of isolated modelled disk galaxies
We present a systematic investigation of rotation curves (RCs) of fully
hydrodynamically simulated galaxies, including cooling, star formation with
associated feedback and galactic winds. Applying two commonly used fitting
formulae to characterize the RCs, we investigate systematic effects on the
shape of RCs both by observational constraints and internal properties of the
galaxies. We mainly focus on effects that occur in measurements of intermediate
and high redshift galaxies. We find that RC parameters are affected by the
observational setup, like slit misalignment or the spatial resolution and also
depend on the evolution of a galaxy. Therefore, a direct comparison of
quantities derived from measured RCs with predictions of semi-analytic models
is difficult. The virial velocity V_c, which is usually calculated and used by
semi-analytic models can differ significantly from fit parameters like V_max or
V_opt inferred from RCs. We find that V_c is usually lower than typical
characteristic velocities derived from RCs. V_max alone is in general not a
robust estimator for the virial mass.Comment: 9 pages, 15 figures, accepted for publication in A&
Internal kinematics of modelled interacting disc galaxies
We present an investigation of galaxy-galaxy interactions and their effects
on the velocity fields of disc galaxies in combined N-body/hydrodynamic
simulations, which include cooling, star formation with feedback, and galactic
winds. Rotation curves (RCs) of the gas are extracted from these simulations in
a way that follows the procedure applied to observations of distant, small, and
faint galaxies as closely as possible. We show that galaxy-galaxy mergers and
fly-bys disturb the velocity fields significantly and hence the RCs of the
interacting galaxies, leading to asymmetries and distortions in the RCs.
Typical features of disturbed kinematics are significantly rising or falling
profiles in the direction of the companion galaxy and pronounced bumps in the
RCs. In addition, tidal tails can leave strong imprints on the rotation curve.
All these features are observable for intermediate redshift galaxies, on which
we focus our investigations. We use a quantitative measure for the asymmetry of
rotation curves to show that the appearance of these distortions strongly
depends on the viewing angle. We also find in this way that the velocity fields
settle back into relatively undisturbed equilibrium states after unequal mass
mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no
severe distortions anymore. These results are consistent with previous
theoretical and observational studies. As an illustration of our results, we
compare our simulated velocity fields and direct images with rotation curves
from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find
remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some
improvements and changes, main conclusions are unaffecte
Metal enrichment of the intra-cluster medium by thermally and cosmic-ray driven galactic winds
We investigate the efficiency and time-dependence of thermally and cosmic ray
driven galactic winds for the metal enrichment of the intra-cluster medium
(ICM) using a new analytical approximation for the mass outflow. The spatial
distribution of the metals are studied using radial metallicity profiles and 2D
metallicity maps of the model clusters as they would be observed by X-ray
telescopes like XMM-Newton. Analytical approximations for the mass loss by
galactic winds driven by thermal and cosmic ray pressure are derived from the
Bernoulli equation and implemented in combined N-body/hydrodynamic cosmological
simulations with a semi-analytical galaxy formation model. Observable
quantities like the mean metallicity, metallicity profiles, and 2D metal maps
of the model clusters are derived from the simulations. We find that galactic
winds alone cannot account for the observed metallicity of the ICM. At redshift
the model clusters have metallicities originating from galactic winds
which are almost a factor of 10 lower than the observed values. For massive,
relaxed clusters we find, as in previous studies, a central drop in the
metallicity due to a suppression of the galactic winds by the pressure of the
ambient ICM. Combining ram-pressure stripping and galactic winds we find radial
metallicity profiles of the model clusters which agree qualitatively with
observed profiles. Only in the inner parts of massive clusters the observed
profiles are steeper than in the simulations. Also the combination of galactic
winds and ram-pressure stripping yields too low values for the ICM
metallicities. The slope of the redshift evolution of the mean metallicity in
the simulations agrees reasonably well with recent observations.Comment: 9 pages, 6 figures, accepted by A&
2D velocity fields of simulated interacting disc galaxies
We investigate distortions in the velocity fields of disc galaxies and their
use to reveal the dynamical state of interacting galaxies at different
redshift. For that purpose, we model disc galaxies in combined
N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted
from these simulations which we place at different redshifts from z=0 to z=1 to
investigate resolution effects on the properties of the velocity field. To
quantify the structure of the velocity field we also perform a kinemetry
analysis. If the galaxy is undisturbed we find that the rotation curve
extracted from the 2D field agrees well with long-slit rotation curves. This is
not true for interacting systems, as the kinematic axis is not well defined and
does in general not coincide with the photometric axis of the system. For large
(Milky way type) galaxies we find that distortions are still visible at
intermediate redshifts but partly smeared out. Thus a careful analysis of the
velocity field is necessary before using it for a Tully-Fisher study. For small
galaxies (disc scale length ~2 kpc) even strong distortions are not visible in
the velocity field at z~0.5 with currently available angular resolution.
Therefore we conclude that current distant Tully-Fisher studies cannot give
reliable results for low-mass systems. Additionally to these studies we confirm
the power of near-infrared integral field spectrometers in combination with
adaptive optics (such as SINFONI) to study velocity fields of galaxies at high
redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high
resolution version can be found at
http://astro.uibk.ac.at/~thomas/kronberger.pd
On the influence of ram-pressure stripping on the star formation of simulated spiral galaxies
We investigate the influence of ram-pressure stripping on the star formation
and the mass distribution in simulated spiral galaxies. Special emphasis is put
on the question where the newly formed stars are located. The stripping radius
from the simulation is compared to analytical estimates. Disc galaxies are
modelled in combined N-body/hydrodynamic simulations (GADGET-2) with
prescriptions for cooling, star formation, stellar feedback, and galactic
winds. These model galaxies move through a constant density and temperature
gas, which has parameters comparable to the intra-cluster medium (ICM) in the
outskirts of a galaxy cluster (T=3 keV ~3.6x10^7 K and rho=10^-28 g/cm^3). With
this numerical setup we analyse the influence of ram-pressure stripping on the
star formation rate of the model galaxy. We find that the star formation rate
is significantly enhanced by the ram-pressure effect (up to a factor of 3).
Stars form in the compressed central region of the galaxy as well as in the
stripped gas behind the galaxy. Newly formed stars can be found up to hundred
kpc behind the disc, forming structures with sizes of roughly 1 kpc in diameter
and with masses of up to 10^7 M_sun. As they do not possess a dark matter halo
due to their formation history, we name them 'stripped baryonic dwarf'
galaxies. We also find that the analytical estimate for the stripping radius
from a Gunn & Gott (1972) criterion is in good agreement with the numerical
value from the simulation. Like in former investigations, edge-on systems lose
less gas than face-on systems and the resulting spatial distribution of the gas
and the newly formed stars is different.Comment: 8 pages, 7 figures, accepted for publication in A&
Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy
(Abridged) We study the impact of cluster environment on the evolution of
spiral galaxies by examining their structure and kinematics. Rather than
two-dimensional rotation curves, we observe complete velocity fields by placing
three adjacent and parallel FORS2 MXU slits on each object, yielding several
emission and absorption lines. The gas velocity fields are reconstructed and
decomposed into circular rotation and irregular motions using kinemetry. To
quantify irregularities in the gas kinematics, we define three parameters:
sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the
average misalignment between kinematic and photometric position angles) and
k_{3,5} (squared sum of the higher order Fourier terms). Using local,
undistorted galaxies from SINGS, these can be used to establish the regularity
of the gas velocity fields. Here we present the analysis of 22 distant galaxies
in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find
both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields
that are both irregular and asymmetric. We show that these fractions are
underestimates of the actual number of galaxies with irregular velocity fields.
The values of the (ir)regularity parameters for cluster galaxies are not very
different from those of the field galaxies, implying that there are isolated
field galaxies that are as distorted as the cluster members. None of the
deviations in our small sample correlate with photometric/structural properties
like luminosity or disk scale length in a significant way.
Our 3D-spectroscopic method successfully maps the velocity field of distant
galaxies, enabling the importance and efficiency of cluster specific
interactions to be assessed quantitatively.Comment: accepted for publication in A&A, high resolution version available at
http://www.astro.rug.nl/~kutdemir/papers
The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies
We investigate the influence of ram-pressure stripping on the internal gas
kinematics of simulated spiral galaxies. Additional emphasis is put on the
question of how the resulting distortions of the gaseous disc are visible in
the rotation curve and/or the full 2D velocity field of galaxies at different
redshifts. A Milky-Way type disc galaxy is modelled in combined
N-body/hydrodynamic simulations with prescriptions for cooling, star formation,
stellar feedback, and galactic winds. This model galaxy moves through a
constant density and temperature gas, which has parameters similar to the
intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the
gas are extracted from these simulations in a way that follows the procedure
applied to observations of distant, small, and faint galaxies as closely as
possible. We find that the appearance of distortions of the gaseous disc due to
ram-pressure stripping depends on the direction of the acting ram pressure. In
the case of face-on ram pressure, the distortions mainly appear in the outer
parts of the galaxy in a very symmetric way. In contrast, in the case of
edge-on ram pressure we find stronger distortions. The 2D velocity field also
shows signatures of the interaction in the inner part of the disc. At angles
smaller than 45 degrees between the ICM wind direction and the disc, the
velocity field asymmetry increases significantly compared to larger angles.
Compared to distortions caused by tidal interactions, the effects of
ram-pressure stripping on the velocity field are relatively low in all cases
and difficult to observe at intermediate redshift in seeing-limited
observations. (abridged)Comment: 9 pages, 11 figures, accepted for publication in A&
Simulations of Metal Enrichment in Galaxy Clusters by AGN Outflows
We assess the importance of AGN outflows with respect to the metal enrichment
of the intracluster medium (ICM) in galaxy clusters. We use combined N-body and
hydrodynamic simulations, along with a semi-numerical galaxy formation and
evolution model. Using assumptions based on observations, we attribute outflows
of metal-rich gas initiated by AGN activity to a certain fraction of our model
galaxies. The gas is added to the model ICM, where the evolution of the
metallicity distribution is calculated by the hydrodynamic simulations. For the
parameters describing the AGN content of clusters and their outflow properties,
we use the observationally most favorable values. We find that AGNs have the
potential to contribute significantly to the metal content of the ICM or even
explain the complete abundance, which is typically ~0.5 Z_sun in core regions.
Furthermore, the metals end up being inhomogeneously distributed, in accordance
with observations.Comment: 7 pages, 6 figures, accepted for publication in A&
Simulations of galactic winds and starbursts in galaxy clusters
We present an investigation of the metal enrichment of the intra-cluster
medium (ICM) by galactic winds and merger-driven starbursts. We use combined
N-body/hydrodynamic simulations with a semi-numerical galaxy formation model.
The mass loss by galactic winds is obtained by calculating transonic solutions
of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure.
The inhomogeneities in the metal distribution caused by these processes are an
ideal tool to reveal the dynamical state of a galaxy cluster. We present
surface brightness, X-ray emission weighted temperature and metal maps of our
model clusters as they would be observed by X-ray telescopes like XMM-Newton.
We show that X-ray weighted metal maps distinguish between pre- or post-merger
galaxy clusters by comparing the metallicity distribution with the
galaxy-density distribution: pre-mergers have a metallicity gap between the
subclusters, post-mergers a high metallicity between subclusters. We apply our
approach to two observed galaxy clusters, Abell 3528 and Abell 3921, to show
whether they are pre- or post-merging systems. The survival time of the
inhomogeneities in the metallicity distribution found in our simulations is up
to several Gyr. We show that galactic winds and merger-driven starbursts enrich
the ICM very efficiently after z=1 in the central (~ 3 Mpc radius) region of a
galaxy cluster.Comment: 18 pages, 25 figures, 2 tables, accepted for publication in A&A, more
technical details added - results are unaffected, high resolution PDF version
is available at http://astro.uibk.ac.at/Kapferer.pd
- …
