1,646 research outputs found

    Mesoscopic, Non-equilibrium Fluctuations of Inhomogeneous Electronic States in Manganites

    Full text link
    By using the dark-field real-space imaging technique of transmission electron microscopy (TEM), we have observed slow 200 A-scale fluctuations of charge-ordered (CO) phase in mixed-valent manganites under a strong electron beam irradiation. In addition to these unusual fluctuations of the CO phase, we observed the switching-type fluctuations of electrical resistivity in the same sample, which were found to be as large as several percents. Systematic analysis indicates that these two different types of fluctuations with a similar time scale of the order of seconds are interconnected through a meta-stable insulating charge-disordered state. Current dependence of the fluctuations suggests a non-equilibrium nature of this slow dynamics.Comment: To appear in Europhysics Letter

    Deterministic models of quantum fields

    Full text link
    Deterministic dynamical models are discussed which can be described in quantum mechanical terms. -- In particular, a local quantum field theory is presented which is a supersymmetric classical model. The Hilbert space approach of Koopman and von Neumann is used to study the classical evolution of an ensemble of such systems. Its Liouville operator is decomposed into two contributions, with positive and negative spectrum, respectively. The unstable negative part is eliminated by a constraint on physical states, which is invariant under the Hamiltonian flow. Thus, choosing suitable variables, the classical Liouville equation becomes a functional Schroedinger equation of a genuine quantum field theory. -- We briefly mention an U(1) gauge theory with ``varying alpha'' or dilaton coupling where a corresponding quantized theory emerges in the phase space approach. It is energy-parity symmetric and, therefore, a prototype of a model in which the cosmological constant is protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 . Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone (Sardinia, Italy), September 12-16, 2005. To appear in the proceeding

    Quantum chromodynamics with advanced computing

    Get PDF
    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced Computing, July 13-17, Seattl

    Desensitizing Inflation from the Planck Scale

    Full text link
    A new mechanism to control Planck-scale corrections to the inflationary eta parameter is proposed. A common approach to the eta problem is to impose a shift symmetry on the inflaton field. However, this symmetry has to remain unbroken by Planck-scale effects, which is a rather strong requirement on possible ultraviolet completions of the theory. In this paper, we show that the breaking of the shift symmetry by Planck-scale corrections can be systematically suppressed if the inflaton field interacts with a conformal sector. The inflaton then receives an anomalous dimension in the conformal field theory, which leads to sequestering of all dangerous high-energy corrections. We analyze a number of models where the mechanism can be seen in action. In our most detailed example we compute the exact anomalous dimensions via a-maximization and show that the eta problem can be solved using only weakly-coupled physics.Comment: 34 pages, 3 figures

    On two-dimensional surface attractors and repellers on 3-manifolds

    Get PDF
    We show that if f:M3M3f: M^3\to M^3 is an AA-diffeomorphism with a surface two-dimensional attractor or repeller B\mathcal B and MB2 M^2_ \mathcal B is a supporting surface for B \mathcal B, then B=MB2\mathcal B = M^2_{\mathcal B} and there is k1k\geq 1 such that: 1) MB2M^2_{\mathcal B} is a union M12...Mk2M^2_1\cup...\cup M^2_k of disjoint tame surfaces such that every Mi2M^2_i is homeomorphic to the 2-torus T2T^2. 2) the restriction of fkf^k to Mi2M^2_i (i{1,...,k})(i\in\{1,...,k\}) is conjugate to Anosov automorphism of T2T^2

    Using informative behavior to increase engagement while learning from human reward

    Get PDF
    In this work, we address a relatively unexplored aspect of designing agents that learn from human reward. We investigate how an agent’s non-task behavior can affect a human trainer’s training and agent learning. We use the TAMER framework, which facilitates the training of agents by human-generated reward signals, i.e., judgements of the quality of the agent’s actions, as the foundation for our investigation. Then, starting from the premise that the interaction between the agent and the trainer should be bi-directional, we propose two new training interfaces to increase a human trainer’s active involvement in the training process and thereby improve the agent’s task performance. One provides information on the agent’s uncertainty which is a metric calculated as data coverage, the other on its performance. Our results from a 51-subject user study show that these interfaces can induce the trainers to train longer and give more feedback. The agent’s performance, however, increases only in response to the addition of performance-oriented information, not by sharing uncertainty levels. These results suggest that the organizational maxim about human behavior, “you get what you measure”—i.e., sharing metrics with people causes them to focus on optimizing those metrics while de-emphasizing other objectives—also applies to the training of agents. Using principle component analysis, we show how trainers in the two conditions train agents differently. In addition, by simulating the influence of the agent’s uncertainty–informative behavior on a human’s training behavior, we show that trainers could be distracted by the agent sharing its uncertainty levels about its actions, giving poor feedback for the sake of reducing the agent’s uncertainty without improving the agent’s performance

    Higgs compositeness in Sp(2N) gauge theories – Determining the low-energy constants with lattice calculations

    Get PDF
    As a first step towards a quantitative understanding of the SU(4)/Sp(4) compositeHiggs model through lattice calculations, we discuss the low energy eective fieldtheory resulting from the SU(4) ! Sp(4) global symmetry breaking pattern. We thenconsider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representationon a lattice, which provides a concrete example of the microscopic realisationof the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programmeof numerical simulations aiming at the determination of the low-energy constants of theeective field theory and we test the method on the quenched theory. We also report earlyresults from dynamical simulations, focussing on the phase structure of the lattice theoryand a calculation of the lowest-lying meson spectrum at coarse lattice spacing

    The Neural Representation of Prospective Choice during Spatial Planning and Decisions

    Get PDF
    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore