1,646 research outputs found
Mesoscopic, Non-equilibrium Fluctuations of Inhomogeneous Electronic States in Manganites
By using the dark-field real-space imaging technique of transmission electron
microscopy (TEM), we have observed slow 200 A-scale fluctuations of
charge-ordered (CO) phase in mixed-valent manganites under a strong electron
beam irradiation. In addition to these unusual fluctuations of the CO phase, we
observed the switching-type fluctuations of electrical resistivity in the same
sample, which were found to be as large as several percents. Systematic
analysis indicates that these two different types of fluctuations with a
similar time scale of the order of seconds are interconnected through a
meta-stable insulating charge-disordered state. Current dependence of the
fluctuations suggests a non-equilibrium nature of this slow dynamics.Comment: To appear in Europhysics Letter
Deterministic models of quantum fields
Deterministic dynamical models are discussed which can be described in
quantum mechanical terms. -- In particular, a local quantum field theory is
presented which is a supersymmetric classical model. The Hilbert space approach
of Koopman and von Neumann is used to study the classical evolution of an
ensemble of such systems. Its Liouville operator is decomposed into two
contributions, with positive and negative spectrum, respectively. The unstable
negative part is eliminated by a constraint on physical states, which is
invariant under the Hamiltonian flow. Thus, choosing suitable variables, the
classical Liouville equation becomes a functional Schroedinger equation of a
genuine quantum field theory. -- We briefly mention an U(1) gauge theory with
``varying alpha'' or dilaton coupling where a corresponding quantized theory
emerges in the phase space approach. It is energy-parity symmetric and,
therefore, a prototype of a model in which the cosmological constant is
protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 .
Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone
(Sardinia, Italy), September 12-16, 2005. To appear in the proceeding
Quantum chromodynamics with advanced computing
We survey results in lattice quantum chromodynamics from groups in the USQCD
Collaboration. The main focus is on physics, but many aspects of the discussion
are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced
Computing, July 13-17, Seattl
Desensitizing Inflation from the Planck Scale
A new mechanism to control Planck-scale corrections to the inflationary eta
parameter is proposed. A common approach to the eta problem is to impose a
shift symmetry on the inflaton field. However, this symmetry has to remain
unbroken by Planck-scale effects, which is a rather strong requirement on
possible ultraviolet completions of the theory. In this paper, we show that the
breaking of the shift symmetry by Planck-scale corrections can be
systematically suppressed if the inflaton field interacts with a conformal
sector. The inflaton then receives an anomalous dimension in the conformal
field theory, which leads to sequestering of all dangerous high-energy
corrections. We analyze a number of models where the mechanism can be seen in
action. In our most detailed example we compute the exact anomalous dimensions
via a-maximization and show that the eta problem can be solved using only
weakly-coupled physics.Comment: 34 pages, 3 figures
On two-dimensional surface attractors and repellers on 3-manifolds
We show that if is an -diffeomorphism with a surface
two-dimensional attractor or repeller and is a
supporting surface for , then and
there is such that: 1) is a union
of disjoint tame surfaces such that every is
homeomorphic to the 2-torus . 2) the restriction of to
is conjugate to Anosov automorphism of
Using informative behavior to increase engagement while learning from human reward
In this work, we address a relatively unexplored aspect of designing agents that learn from human reward. We investigate how an agent’s non-task behavior can affect a human trainer’s training and agent learning. We use the TAMER framework, which facilitates the training of agents by human-generated reward signals, i.e., judgements of the quality of the agent’s actions, as the foundation for our investigation. Then, starting from the premise that the interaction between the agent and the trainer should be bi-directional, we propose two new training interfaces to increase a human trainer’s active involvement in the training process and thereby improve the agent’s task performance. One provides information on the agent’s uncertainty which is a metric calculated as data coverage, the other on its performance. Our results from a 51-subject user study show that these interfaces can induce the trainers to train longer and give more feedback. The agent’s performance, however, increases only in response to the addition of performance-oriented information, not by sharing uncertainty levels. These results suggest that the organizational maxim about human behavior, “you get what you measure”—i.e., sharing metrics with people causes them to focus on optimizing those metrics while de-emphasizing other objectives—also applies to the training of agents. Using principle component analysis, we show how trainers in the two conditions train agents differently. In addition, by simulating the influence of the agent’s uncertainty–informative behavior on a human’s training behavior, we show that trainers could be distracted by the agent sharing its uncertainty levels about its actions, giving poor feedback for the sake of reducing the agent’s uncertainty without improving the agent’s performance
Higgs compositeness in Sp(2N) gauge theories – Determining the low-energy constants with lattice calculations
As a first step towards a quantitative understanding of the SU(4)/Sp(4) compositeHiggs model through lattice calculations, we discuss the low energy eective fieldtheory resulting from the SU(4) ! Sp(4) global symmetry breaking pattern. We thenconsider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representationon a lattice, which provides a concrete example of the microscopic realisationof the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programmeof numerical simulations aiming at the determination of the low-energy constants of theeective field theory and we test the method on the quenched theory. We also report earlyresults from dynamical simulations, focussing on the phase structure of the lattice theoryand a calculation of the lowest-lying meson spectrum at coarse lattice spacing
The Neural Representation of Prospective Choice during Spatial Planning and Decisions
We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
