256 research outputs found
Un R\'esultat de Compl\'etude pour les Types du Syst\`eme F
We presente in this note a completeness result for the types with positive
quantifiers of the J.-Y. Girard type system F. This result generalizes a
theorem of R. Labib-Sami
TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication
The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.</p
The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans
<div><p>Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and <i>Caenorhabditis elegans</i> indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in <i>C</i>. <i>elegans</i> meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with <i>slx-1</i> and <i>mus-81</i> mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in <i>lem-3</i> single mutants or in combination with <i>mus-81</i> or <i>slx-4</i> mutations. Finally, we found persistent chromatin bridges during meiotic divisions in <i>lem-3; slx-4</i> double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.</p></div
Pif1-Family helicases support fork convergence during DNA replication termination in eukaryotes
The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms
A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint
Brief Announcement: Hamming Distance Completeness and Sparse Matrix Multiplication
We show that a broad class of (+, diamond) vector products (for binary integer functions diamond) are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include: the dominance product, the threshold product and l_{2p+1} distances for constant p. Our results imply equivalence (up to poly log n factors) between complexity of computation of All Pairs: Hamming Distances, l_{2p+1} Distances, Dominance Products and Threshold Products. As a consequence, Yuster\u27s (SODA\u2709) algorithm improves not only Matousek\u27s (IPL\u2791), but also the results of Indyk, Lewenstein, Lipsky and Porat (ICALP\u2704) and Min, Kao and Zhu (COCOON\u2709). Furthermore, our reductions apply to the pattern matching setting, showing equivalence (up to poly log n factors) between pattern matching under Hamming Distance, l_{2p+1} Distance, Dominance Product and Threshold Product, with current best upperbounds due to results of Abrahamson (SICOMP\u2787), Amir and Farach (Ann. Math. Artif. Intell.\u2791), Atallah and Duket (IPL\u2711), Clifford, Clifford and Iliopoulous (CPM\u2705) and Amir, Lipsky, Porat and Umanski (CPM\u2705). The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are new.
Additionally, we show that the complexity of AllPairsHammingDistances (and thus of other aforementioned AllPairs- problems) is within poly log n from the time it takes to multiply matrices n x (n * d) and (n * d) x n, each with (n * d) non-zero entries. This means that the current upperbounds by Yuster (SODA\u2709) cannot be improved without improving the sparse matrix multiplication algorithm by Yuster and Zwick (ACM TALG\u2705) and vice versa
USP37 protects mammalian cells during DNA replication stress by counteracting CUL2LRR1 and TRAIP
The USP37 deubiquitylase is important for mammalian cells to survive DNA replication stress but the underlying mechanisms are unknown. Here we demonstrate that USP37 binds the CDC45-MCM-GINS (CMG) helicase, which forms the stable core of the replisome and is regulated by ubiquitylation. The Pleckstrin-Homology Domain of USP37 binds CDC45 and structure-guided mutations that displace USP37 from CMG are sufficient to phenocopy loss of USP37 catalytic activity. Importantly, USP37 counteracts CMG helicase ubiquitylation by the CUL2LRR1 ligase, which induces helicase disassembly during termination. We show that depletion of CUL2LRR1 suppresses the sensitivity of Usp37 mutants to DNA synthesis defects and to ATR checkpoint kinase inhibitors. In contrast, mutation of the TRAIP ubiquitin ligase specifically suppresses the sensitivity of Usp37 mutants to topological stress during chromosome replication. We propose that USP37 evolved to reverse the untimely action of the two ubiquitin ligases that regulate the CMG helicase during chromosome replication in metazoa
CMG helicase disassembly is essential and driven by two pathways in budding yeast
The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2Δ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1 family helicases might have mediated CMG disassembly in ancestral eukaryotes
The replisome-coupled E3 ubiquitin ligase Rtt101Mms22 counteracts Mrc1 function to tolerate genotoxic stress
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1's replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks.</p
- …
