24 research outputs found
Charge Carrier Transport in Solution Processed Organic Semiconductor Thin Films
Understanding and controlling the flow of charge carriers lies at the heart of today's society as it is the basis for the successful operation of electronic devices. Here, the charge transport properties of organic semiconductor thin films will be investigated. The first part of this work focusses on the fundamentals of charge transport in such films starting with investigations into metal-insulator semiconductor capacitors. A robust and widely applicable approach to measure the charge carrier mobility in semiconductors will be presented next, enabling a novel way to measure this important transport parameter with minimal influence of the commonly occurring injection barriers. Further investigations into the local electrical properties of a transistor under operation condition are carried out. The second part of this thesis is focused on detailed studies into two material classes bearing potential applications in the field of organic electronics. It is shown that the prototypical organic semiconductor Poly(para-phenylene) indeed possesses semiconducting properties in its unsubstituted form. The materials crystallinity was further improved through careful precursor design. Cinnamic acid derivatives are further shown to cross-link under electron radiation. This finding is applied in a semiconducting polymer which preserves its semiconducting properties even after electron beam patterning
Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe
Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays
Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays
Wearable pressure sensors have demonstrated great potential in detecting pulse pressure waves on the skin for the noninvasive and continuous diagnosis of cardiac conditions. However, difficulties lie in positioning conventional single-point sensors on an invisible arterial line, thereby preventing the detection of adequate signal amplitude for accurate pulse wave analysis. Herein, we introduce the spatiotemporal measurements of arterial pulse waves using wearable active-matrix pressure sensors to obtain optimal pulse waveforms. We fabricate thin-film transistor (TFT) arrays with high yield and uniformity using inkjet printing where array sizes can be customizable and integrate them with highly sensitive piezoresistive sheets. We maximize the pressure sensitivity (16.8 kPa(-1)) and achieve low power consumption (10(1) nW) simultaneously by strategically modulating the TFT operation voltage. The sensor array creates a spatiotemporal pulse wave map on the wrist. The map presents the positional dependence of pulse amplitudes, which allows the positioning of the arterial line to accurately extract the augmentation index, a parameter for assessing arterial stiffness. The device overcomes the positional inaccuracy of conventional single-point sensors, and therefore, it can be used for medical applications such as arterial catheter injection or the diagnosis of cardiovascular disease in daily life
Small Change, Big Impact: The Shape of Precursor Polymers Governs Poly-<i>p</i>-phenylene Synthesis
Electron-beam lithography of cinnamate polythiophene films: conductive nanorods for electronic applications
Electron beam lithography patterns selectively cinnamate-substituted polythiophene thin films via [2+2]-cycloaddition. A nanoscale organic field effect transistor is constructed using cross-linked and doped polythiophene as electrodes.</jats:p
