85 research outputs found
Consumption-Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint.
Although most conservation efforts address the direct, local causes of biodiversity loss, effective long-term conservation will require complementary efforts to reduce the upstream economic pressures, such as demands for food and forest products, which ultimately drive these downstream losses. Here, we present a wildlife footprint analysis that links global losses of wild birds to consumer purchases across 57 economic sectors in 129 regions. The United States, India, China, and Brazil have the largest regional wildlife footprints, while per-person footprints are highest in Mongolia, Australia, Botswana, and the United Arab Emirates. A US$100 purchase of bovine meat or rice products occupies approximately 0.1 km2 of wild bird ranges, displacing 1-2 individual birds, for 1 year. Globally significant importer regions, including Japan, the United Kingdom, Germany, Italy, and France, have large footprints that drive wildlife losses elsewhere in the world and represent important targets for consumption-focused conservation attention
Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth
Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa's biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Ecosystems are under multiple stressors, and impacts can be measured with multiple variables. Humans have altered mass and energy flows of basically all ecosystems on Earth towards dangerous levels. However, integrating the data and synthesizing conclusions is becoming more and more complicated. Here we present an automated and easy-to-apply R package to assess terrestrial biosphere integrity that combines two complementary metrics. (i) The BioCol metric that quantifies the human colonization pressure exerted on the biosphere through alteration and extraction (appropriation) of net primary productivity.(ii) The EcoRisk metric that quantifies biogeochemical and vegetation structural changes as a proxy for the risk of ecosystem destabilization. Applied to simulations with the dynamic global vegetation model LPJmL5 for 1500–2016, we find that large regions presently (period 2007–2016) show modification and extraction of >20 % of the preindustrial potential net primary production. The modification (degradation) of net primary production (NPP) as a result of land use change and extraction in terms of biomass removal (e.g., from harvest) leads to drastic alterations in key ecosystem properties, which suggests a high risk of ecosystem destabilization. As a consequence of these dynamics, EcoRisk shows particularly high values in regions with intense land use and deforestation and in regions prone to impacts of climate change, such as the Arctic and boreal zone. The metrics presented here enable spatially explicit global-scale evaluation of historical and future states of the biosphere and are designed for use by the wider scientific community, being applicable not only to assessing biosphere integrity but also to benchmarking model performance. The package will be maintained on GitHub and through that we encourage its future application to other models and data sets.Peer Reviewe
Hotspots of land use change in Europe
Die Zweitveröffentlichung der Publikation wurde durch Studierende des Projektseminars "Open Access Publizieren an der HU" im Sommersemester 2017 betreut. Nachgenutzt gemäß den CC-Bestimmungen des Lizenzgebers bzw. einer im Dokument selbst enthaltenen CC-Lizenz.Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions.Wecompiled and analyzed high-resolution, spatiallyexplicit land-use change indicators capturing changes in both the extent and management intensity of
cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes.Wefound a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite
the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its
environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.Peer Reviewe
Faculty Opinions recommendation of Forest carbon sink neutralized by pervasive growth-lifespan trade-offs.
Faculty Opinions recommendation of GHG displacement factors of harvested wood products: the myth of substitution.
- …
