11 research outputs found

    Dynamics of topological defects in ion Coulomb crystals

    Full text link
    We study experimentally and theoretically the properties of structural defects (kink solitons) in two-dimensional ion Coulomb crystals. We show how different types of kink solitons with different physical properties can be realized, and transformed from one type into another by varying the aspect ratio of the trap confinement. Further, we discuss how impurities in ion Coulomb crystals, such as mass defects, can modify the dynamics of kink creation and their stability. For both pure and impure crystals, the experimentally observed kink dynamics are analyzed in detail and explained theoretically by numerical simulations and calculations of the Peierls-Nabarro potential. Finally, we show that static electric fields provide a handle to vary the influence of mass defects on kinks in a controlled way and allow for deterministic manipulation and creation of kinks.Comment: 21 pages, 8 figure

    High-precision ion trap for spectroscopy of Coulomb crystals

    Get PDF
    [no abstract

    Site-resolved imaging of beryllium ion crystals in a high-optical-access Penning trap with inbore optomechanics

    Full text link
    We present the design, construction and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using Be-9 ions in a Penning trap. This article provides a detailed overview of the core optical and trapping subsystems, and their integration. We begin with a description of a dual-trap design separating loading and experimental zones and associated vacuum infrastructure design. The experimental-zone trap electrodes are designed for wide-angle optical access (e.g. for lasers used to engineer spin-motional coupling across large ion crystals) while simultaneously providing a harmonic trapping potential. We describe a near-zero-loss liquid-cryogen-based superconducting magnet, employed in both trapping and establishing a quantization field for ion spin-states, and equipped with a dual-stage remote-motor LN2LHe recondenser. Experimental measurements using a nuclear magnetic resonance (NMR) probe demonstrate part-per-million homogeneity over 7 mm-diameter cylindrical volume, with no discernible effect on the measured NMR linewidth from pulse-tube operation. Next we describe a custom-engineered inbore optomechanical system which delivers ultraviolet (UV) laser light to the trap, and supports multiple aligned optical objectives for top- and sideview imaging in the experimental trap region. We describe design choices including the use of non-magnetic goniometers and translation stages for precision alignment. Further, the optomechanical system integrates UV-compatible fiber optics which decouple the system's alignment from remote light sources. Using this system we present site-resolved images of ion crystals and demonstrate the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams. Looking to future work, we include interferometric..Comment: 31 pages, 19 figure

    A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock

    Full text link
    We present an experiment to characterize our new linear ion trap designed for the operation of a many-ion optical clock using 115-In^+ as clock ions. For the characterization of the trap as well as the sympathetic cooling of the clock ions we use 172-Yb^+. The trap design has been derived from finite element method (FEM) calculations and a first prototype based on glass-reinforced thermoset laminates was built. This paper details on the trap manufacturing process and micromotion measurement. Excess micromotion is measured using photon-correlation spectroscopy with a resolution of 1.1nm in motional amplitude, and residual axial rf fields in this trap are compared to FEM calculations. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20. Based on the measurement of axial rf fields of our trap, we estimate a number of twelve ions that can be stored per trapping segment and used as an optical frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to micromotion.Comment: 19 pages with 14 picture

    Momentum-Resolved Bragg Spectroscopy in Optical Lattices

    Full text link
    Strongly correlated many-body systems show various exciting phenomena in condensed matter physics such as high-temperature superconductivity and colossal magnetoresistance. Recently, strongly correlated phases could also be studied in ultracold quantum gases possessing analogies to solid-state physics, but moreover exhibiting new systems such as Fermi-Bose mixtures and magnetic quantum phases with high spin values. Particularly interesting systems here are quantum gases in optical lattices with fully tunable lattice and atomic interaction parameters. While in this context several concepts and ideas have already been studied theoretically and experimentally, there is still great demand for new detection techniques to explore these complex phases in detail. Here we report on measurements of a fully momentum-resolved excitation spectrum of a quantum gas in an optical lattice by means of Bragg spectroscopy. The bandstructure is measured with high resolution at several lattice depths. Interaction effects are identified and systematically studied varying density and excitation fraction.Comment: 13 pages, 5 figure
    corecore