69 research outputs found

    Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.

    Get PDF
    UnlabelledMany symbiotic gut bacteria possess the ability to degrade multiple polysaccharides, thereby providing nutritional advantages to their hosts. Like microorganisms adapted to other complex nutrient environments, gut symbionts give different metabolic priorities to substrates present in mixtures. We investigated the responses of Bacteroides thetaiotaomicron, a common human intestinal bacterium that metabolizes more than a dozen different polysaccharides, including the O-linked glycans that are abundant in secreted mucin. Experiments in which mucin glycans were presented simultaneously with other carbohydrates show that degradation of these host carbohydrates is consistently repressed in the presence of alternative substrates, even by B. thetaiotaomicron previously acclimated to growth in pure mucin glycans. Experiments with media containing systematically varied carbohydrate cues and genetic mutants reveal that transcriptional repression of genes involved in mucin glycan metabolism is imposed by simple sugars and, in one example that was tested, is mediated through a small intergenic region in a transcript-autonomous fashion. Repression of mucin glycan-responsive gene clusters in two other human gut bacteria, Bacteroides massiliensis and Bacteroides fragilis, exhibited variable and sometimes reciprocal responses compared to those of B. thetaiotaomicron, revealing that these symbionts vary in their preference for mucin glycans and that these differences occur at the level of controlling individual gene clusters. Our results reveal that sensing and metabolic triaging of glycans are complex processes that vary among species, underscoring the idea that these phenomena are likely to be hidden drivers of microbiota community dynamics and may dictate which microorganisms preferentially commit to various niches in a constantly changing nutritional environment.ImportanceHuman intestinal microorganisms impact many aspects of health and disease, including digestion and the propensity to develop disorders such as inflammation and colon cancer. Complex carbohydrates are a major component of the intestinal habitat, and numerous species have evolved and refined strategies to compete for these coveted nutrients. Our findings reveal that individual bacteria exhibit different preferences for carbohydrates emanating from host diet and mucosal secretions and that some of these prioritization strategies are opposite to one another. Thus, we reveal new aspects of how individual bacteria, some with otherwise similar metabolic potential, partition to "preferred niches" in the complex gut ecosystem, which has important and immediate implications for understanding and predicting the behavioral dynamics of this community

    Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes

    Get PDF
    It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains’ competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation

    Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria

    Get PDF
    Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in the human colon. Since the identities and amounts of dietary polysaccharides directly impact the gut microbiota, determining which microorganisms consume specific nutrients is central for defining the relationship between diet and gut microbial ecology. Using a custom phenotyping array, we determined carbohydrate utilization profiles for 354 members of the Bacteroidetes, a dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates degraded by individual bacteria, but phenotype-based clustering grouped members of the same species indicating that each species performs characteristic roles. The ability to utilize dietary polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion between these niches. By analyzing related Bacteroides ovatus/Bacteroides xylanisolvens strains that vary in their ability to utilize mucin glycans, we addressed whether gene clusters that confer this complex, multilocus trait are being gained or lost in individual strains. Pangenome reconstruction of these strains revealed a remarkably mosaic architecture in which genes involved in polysaccharide metabolism are highly variable and bioinformatics data provide evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of B. ovatus and B. xylanisolvens, which harbor residual gene clusters that are involved in mucin utilization by strains that still actively express this phenotype. Our data provide insight into the breadth and complexity of carbohydrate metabolism in the microbiome and the underlying genomic events that shape these behaviors

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for Bacteroides thetaiotaomicron (Bt), a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by Bt presents a ‘selfish’ model for the catabolism of this recalcitrant polysaccharide. This report shows how a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    Beyond Nitrogen Limitation – Novel Mechanisms Regulating Glutamine Synthetase Expression in Escherichia coli and a Possible Alternative Pathway of Glutamine Synthesis

    No full text
    The expression of glnA (ammonia-assimilating glutamine synthetase) is high for uropathogenic E. coli grown in urine. Because glnA is part of an operon that codes for regulators of the nitrogen-regulated (Ntr) response, high glnA expression has been interpreted to suggest nitrogen limitation, which is unexpected because of the high urinary ammonia concentration which should suppress glnA expression. We present evidence that glnA expression does not result from nitrogen limitation. First, in the presence of ammonia, urea induced expression of glnA from the cAMP receptor protein (Crp)- dependent glnAp1 promoter, which circumvents control from the nitrogen-regulated glnAp2 promoter. This urea effect on glnA expression has not been previously described. Second, the most abundant amino acids in urine inhibited GS activity, based on reversal of the inhibition by glutamate and glutamine, and increased glnA expression. The relevance of these inhibitory amino acids in natural environments has not been previously demonstrated. Third, urea and the inhibitory amino acids did not induce other Ntr genes, i.e., high glnA expression can be independent of other Ntr genes. Finally, the urea- dependent induction did not result in GlnA synthesis because of a previously undescribed translational control. We conclude that glnA expression in urea-containing environments does not imply growth rate-limiting nitrogen restriction and is consistent with rapid growth of uropathogenic E. coli. ΔglnA mutants are glutamine auxotrophs, however, UTI89ΔglnA mutants, were unexpectedly able to grow in a synthetic urine medium. This phenotype was conditional and required the presence of both glutamate and ammonia, the substrates for glutamine synthetase. Additionally, overexpression of proA, which is part of the proline biosynthesis pathway, whose product catalyzes the formation of glutamate-5-semialdehyde, improved growth. In contrast, an increase in proC expression, which directs pyrroline-5-carboxylate, the cyclized form of glutamate-5-semialdehyde to proline, impaired growth. We describe a possible alternate route of glutamine production in these mutants involving the enzymes of proline synthesis and the substrates, glutamate and ammonia, via the intermediate glutamate-5-semialdehyde. The pathway may be facilitated by a putative secondary activity of the ProA enzyme – the reduction of a proposed imine intermediate to ultimately form glutamine. Members of the B2 clade of E. coli exhibit high glnA transcript levels in nitrogen-rich glucose-tryptone medium. This increased expression did not translate to increased protein production and enzyme activity as evidenced by low translation levels and glutamine synthetase activity in these strains. Transcriptomic analysis revealed an inverse correlation between phoB, a phosphate-dependent transcriptional regulator, and glnA expression. Consistent with this, overexpression of phoB, reduced glnA transcription levels. The effect was not a complete repression of glnA transcription. Additionally, translational expression appeared to be stabilized upon phoB overexpression. Our findings suggest a novel mechanism of glnA regulation at both the transcriptional and translational levels that involves PhoB operating either directly or indirectly, and possibly in combination with other unidentified factors

    Initial survey of PLA2G6 missense variant causing neuroaxonal dystrophy in Papillon dogs in North America and Europe

    No full text
    Abstract Background An autosomal recessive, rapidly progressive degenerative neuropathy known as infantile neuroaxonal dystrophy (NAD) was originally reported in Papillion puppies in 1995. In 2015, a causative missense variant in the PLA2G6 gene was identified in three affected puppies. Archived samples from Papillons clinically diagnosed with NAD prior to 2015 as well as samples obtained from 660 Papillons from North America and Europe between 2015 and 2017 were screened for the presence of this PLA2G6 gene variant (XM_022424454.1:c.1579G &gt; A) using a TaqMan assay. Results Archived samples from affected puppies diagnosed prior to 2015 and three more recently acquired samples from Papillons clinically affected with NAD were all homozygous for the variant. SIFT analysis predicts that the PLA2G6 missense substitution (XP_022280162.1:p.Ala527Thr) will not be tolerated in the iPLA2β protein. Notably, 17.5% of the 660 tested Papillons were heterozygotes, resulting in a variant allele frequency of 0.092 in this initial survey. Since then, screening for NAD in Papillons by at least 10 other laboratories and data from the Health Committee of Papillon Club of America gathered between 2017 and 2019 reveal a variant allele frequency of 0.047. Conclusions This survey and data from other laboratories documents the widespread presence of the PLA2G6 variant in the Papillon population in North America and Europe. Despite the apparent declining prevalence of the PLA2G6 variant, screening of Papillons intended for breeding is still recommended to avoid inadvertent production of puppies with infantile NAD. </jats:sec

    SEARCHING ENCRYPTED CLOUD DATA

    No full text
    The major setback of the cloud is its inability to induce strong trust in its users. For us, the users of the cloud, to be sure of the security of the data from other users, we have to trust cloud. In most of the cases, say if the data were to be hosted on Microsoft’s servers, we can trust Microsoft in its policies to prevent unauthorized access to it from other users (via hacking). But, the issue that is haunting the cloud is this - ”How can we be sure that our data is safe from Cloud service providers themselves?” The most intuitive solution for the cloud service provider to gain trust is to insist we encrypt our data. That is an irrefutable act of honesty from the cloud. But this has some obvious setbacks, few of which would negate the very advantages of cloud. One such issue that dictates the scope of this thesis is this - Typical cryptographic algorithms are not amenable to search. Now, if we were to implement a search engine on cloud (which has the data encrypted), the native search techniques have to be extended on to the cryptographic domain so that the cloud can perform the tasks of a search engine. This thesis explores the solutions to the above mentioned problem of searching over encrypted data, specifically using a secure pre-processed index approach. Though significant ideas have been proposed in the area, there is no concrete implementation to analyze if it can be used in the industrial setting. The main goal of the thesis is to implement a system which supports a variety of searching techniques. We make use of Amazon EC2 and test out the designed systems to evaluate how feasible they are for immediate consumption by the industry.M.S. in Computer Engineering, May 201
    corecore