1,181 research outputs found

    Seismic behavior of triple tunnel complex in soft soil subjected to transverse shaking

    Get PDF
    Combining multiple tunnels into a single tunnel complex while keeping the surrounding area compact is a complicated procedure. The condition becomes more complex when soft soil is present and the area is prone to seismic activity. Seismic vibrations produce sudden ground shaking, which causes a sharp decrease in the shear strength and bearing capacity of the soil. This results in larger ground displacements and deformation of structures located at the surface and within the soil mass. The deformations are more pronounced at shallower depths and near the ground surface. Tunnels located in that area are also affected and can undergo excessive distortions and uplift. The condition becomes worse if the tunnel area is larger, and, thus, the respective tunnel complex needs to be properly evaluated. In this research, a novel triple tunnel complex formed by combining three closely spaced tunnels is numerically analyzed using Plaxis 2D software under variable dynamic loadings. The effect of variations in lining thickness, the inner supporting structure, embedment depth on the produced ground displacements, tunnel deformations, resisting bending moments, and the developed thrusts are studied in detail. The triple tunnel complex is also compared with the rectangular and equivalent horizontal twin tunnel complexes in terms of generated thrusts and resisted seismic-induced bending moments. From the results, it is concluded that increased thickness of the lining, inner structure, and greater embedment depth results in decreased ground displacements, tunnel deformations, and increased resistance to seismic-induced bending moments. The comparison of shapes revealed that the triple tunnel complex has better resistance against moments with the least amount of thrust and surface heave produced

    The Strategy of the Commons: Modelling the Annual Cost of Successful ICT Services for European Research

    Get PDF
    The provision of ICT services for research is increasingly using Cloud services to complement the traditional federation of computing centres. Due to the complex funding structure and differences in the basic business model, comparing the cost-effectiveness of these options requires a new approach to cost assessment. This paper presents a cost assessment method addressing the limitations of the standard methods and some of the initial results of the study. This acts as an illustration of the kind of cost assessment issues high-utilisation rate ICT services should consider when choosing between different infrastructure options. The research is co-funded by the European Commission Seventh Framework Programme through the e-FISCAL project (contract number RI-283449)

    Improving quality of service through road side back-bone network in VANET

    Get PDF
    The vehicular ad hoc Networks (VANETs) are expected to support a large spectrum of traffic alert, dynamic route planning, file sharing, safety and infotainment applications to improve traffic management. User satisfaction plus in time delivery of real-time messages is the most significant quality evaluation criterion for vehicular applications. High mobility and rapidly changing topologies always lead to intermittent quality of services, higher delay and packet dropping issues in network. To improve the quality of services for multi-hop and dynamic environment, different types of solutions have been proposed. The article introduces multi-protocol label switching based on roadside backbone network to provide widespread, scalable, high-speed, robust quality of services and improve network efficiency. The simulation results showed that proposed model improves data transmission and routing performance in terms of data delivery, throughput, end-to-end delay and achieve adequate utilization of resources

    B-type natriuretic peptide versus amino terminal pro-B type natriuretic peptide: selecting the optimal heart failure marker in patients with impaired kidney function

    Get PDF
    Background: The effect of impaired kidney function on B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) is vague. This study was performed to examine the effect of kidney dysfunction on the afore-mentioned markers and determine appropriate cutoffs for systolic heart failure (SHF). Methods: In this cross sectional study adults with estimated glomerular filtration rate (eGFR)/min for ≥3 months were identified in consulting clinics from June 2009 to March 2010. SHF was defined as documented by a cardiologist with ejection fraction of \u3c 40% and assessed by New York Heart Association classification (NYHA). Plasma was assayed for creatinine (Cr), BNP and NT-proBNP. Results: A total of 190 subjects were enrolled in the study, 95 with and 95 without SHF. The mean age of patients was 58 (±15) years, 67.4% being males. Mean BNP levels showed a 2.5 fold and 1.5 fold increase from chronic kidney disease (CKD) stage 3 to stage 5 in patients with and without SHF respectively. NT-proBNP levels in non-heart failure group were 3 fold higher in CKD stage 5 compared to stage 3. Mean NT-proBNP levels were 4 fold higher in CKD stage 5 compared to stage 3 in patients with SHF. Optimal BNP and NT-proBNP cutoffs of SHF diagnosis for the entire CKD group were 300 pg/ml and 4502 pg/ml respectively. Conclusion: BNP and NT-proBNP were elevated in kidney dysfunction even in the absence of SHF; however the magnitude of increase in NT-proBNP was greater than that of BNP. BNP and NT-proBNP can be useful in diagnosing SHF, nonetheless, by using higher cutoffs stratified according to kidney dysfunction. NT-proBNP appears to predict heart failure better than BNP

    Experimental and numerical studies of thermoregulating textiles incorporated with phase change materials

    Get PDF
    Phase change materials (PCMs) provide thermal management solution to textiles for the protection of wearer from extreme weather conditions. PCMs are the substances which can store or release a large amount of energy in the form of latent heat at certain melting temperature. This research reports practical and theoretical studies of textiles containing PCMs. Mono and multifilament filaments incorporated with microencapsulated phase change material (MPCM) have been developed through melt spinning process. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) have been performed for the characterisation of MPCM polypropylene filaments. The parameters for optimum fibre processing and their effect on mechanical properties of filaments with respect to the amount of MPCM have also been studied. A plain woven fabric has been constructed using the developed MPCM multifilament yarn. The heat transfer property of the multifilament yarn and fabric has been investigated using finite element method. The time dependent thermoregulating effect of yarn and fabric incorporated with MPCM has also been predicted according to the validated models. The synthesis of Nanocapsules containing mixture of paraffins and Glauber’s salt as PCM and its characterisation using DSC and SEM has also been carried out. Polypropylene monofilament incorporated with the nanoencapsulated paraffins was developed and its properties have been compared to its MPCM counterpart. Furthermore the developed nanocapsules were applied on a cotton fabric via a pad-dry-cure process and the resultant fabric was evaluated using DSC and SEM in comparison with MPCM treated fabric. The research work described in this thesis has established a better understanding of use of phase change materials in textiles, the evaluation and application. It is anticipated that this research will broaden the understanding and potential use of encapsulated phase change materials in textiles especially in the field of active smart textiles

    Underwater Image Enhancement Using Integrated Contrast Correction And White Balance Methods.

    Get PDF
    Kejelasan imej-imej dalam air dijejaskan oleh penyerapan cahaya, penyerakan cahaya dan kekeruhan air. The clarity of underwater images is degraded by light absorption, scattering of light and turbidity of water

    Comparison of high-order methods on unstructured grids

    Get PDF
    A high-order Discontinuous Galerkin (DG) method is formulated and implemented on the Cranfield University’s 3D unstructured Finite Volume Method (FVM) code (UCNS3D), for both linear and non-linear hyperbolic conservation laws and for test-cases which exhibit both smooth and discontinuous solutions. As both DG and FVM are developed on the same solver platform, this enables the use of any procedures which are common to both the methods, thus, ensuring the closest possible compari-son. The initial part of the thesis details the basic concepts and derivation of the discon-tinuous Galerkin method in the 1D space for the advection equation, which is then extended to the 3D space for a hyperbolic system. Prior to comparing the FVM and DG methods, the DG method implementation is verified. The verification is a combination of a theoretical and numerical approach which endeavours to minimize any potential programming errors. Following the verification of the DG method, the FVM and DG methods are compared for numerous flows: the linear advection equation and Euler equations, sufficiently smooth testcases, and testcases which require a limiter to suppress Gibb’s oscillations

    Design implications for task-specific search utilities for retrieval and re-engineering of code

    Get PDF
    The importance of information retrieval systems is unquestionable in the modern society and both individuals as well as enterprises recognise the benefits of being able to find information effectively. Current code-focused information retrieval systems such as Google Code Search, Codeplex or Koders produce results based on specific keywords. However, these systems do not take into account developers’ context such as development language, technology framework, goal of the project, project complexity and developer’s domain expertise. They also impose additional cognitive burden on users in switching between different interfaces and clicking through to find the relevant code. Hence, they are not used by software developers. In this paper, we discuss how software engineers interact with information and general-purpose information retrieval systems (e.g. Google, Yahoo!) and investigate to what extent domain-specific search and recommendation utilities can be developed in order to support their work-related activities. In order to investigate this, we conducted a user study and found that software engineers followed many identifiable and repeatable work tasks and behaviours. These behaviours can be used to develop implicit relevance feedback-based systems based on the observed retention actions. Moreover, we discuss the implications for the development of task-specific search and collaborative recommendation utilities embedded with the Google standard search engine and Microsoft IntelliSense for retrieval and re-engineering of code. Based on implicit relevance feedback, we have implemented a prototype of the proposed collaborative recommendation system, which was evaluated in a controlled environment simulating the real-world situation of professional software engineers. The evaluation has achieved promising initial results on the precision and recall performance of the system
    corecore