51 research outputs found

    A Retrospective Sero-Surveillance Study for Antibodies Against Tick-Borne Encephalitis Virus in Norway

    Get PDF
    Tick-borne encephalitis virus (TBEV) is an emerging pathogen that initially causes flu-like symptoms and can progress to central nervous system (CNS) infections. Tick-borne encephalitis (TBE) is an endemic disease in southern coastal counties with regular human cases, while the causative agent, TBEV, is prevalent in ticks in most of the coastal regions of Norway. This study was aimed to understand TBEV infection status across Norway including both TBE endemic and non-endemic areas. For this, we analyzed a total of 1940 residual serum samples from 19 counties of Norway (as of 2016). The samples were initially screened by ELISA, followed by virus neutralization tests for TBEV confirmation. We found a similar TBEV seroprevalence of 1.7% in TBE endemic and 1.6% in non-endemic areas. Since TBE cases are only reported from endemic regions, our findings suggest a potential subclinical or asymptomatic infection and underdiagnosis in non-endemic areas. Notably, only 43% of the ELISA-positive samples were confirmed by virus neutralization tests indicating that not all ELISA positives are true TBEV infections. Additionally, 137 samples of patients presenting with symptoms of CNS infections from a non-endemic area were included. Of these samples, 11 ELISA-positive samples were analyzed for cross-reactivity among flaviviruses. Cross-reactivity was detected with Dengue virus, West Nile Virus, and non-specific reactions. This underscores the importance of using multiple diagnostic tests to confirm TBEV infections. None of the patients with CNS infection was found to be TBE positive, and in the whole cohort, we found a low TBEV seroprevalence of 0.7%

    NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity

    Get PDF
    Background: Obesity is an increasingly prevalent metabolic disorder in the modern world and is associated with structural and functional changes in the heart. The NLRP3 inflammasome is an innate immune sensor that can be activated in response to endogenous danger signals and triggers activation of interleukin (IL)-1β and IL-18. Increasing evidence points to the involvement of the NLRP3 inflammasome in obesity-induced inflammation and insulin resistance, and we hypothesized that it also could play a role in the development of obesity induced cardiac alterations. Methods and Results: WT, Nlrp3−/−, and ASC−/− (Pycard−/−) male mice were exposed to high fat diet (HFD; 60 cal% fat) or control diet for 52 weeks. Cardiac structure and function were evaluated by echocardiography and magnetic resonance imaging, respectively. Whereas, NLRP3 and ASC deficiency did not affect the cardiac hypertrophic response to obesity, it was preventive against left ventricle concentric remodeling and impairment of diastolic function. Furthermore, whereas NLRP3 and ASC deficiency attenuated systemic inflammation in HFD fed mice; long-term HFD did not induce significant cardiac fibrosis or inflammation, suggesting that the beneficial effects of NLRP3 inflammasome deficiency on myocardial remodeling at least partly reflect systemic mechanisms. Nlrp3 and ASC (Pycard) deficient mice were also protected against obesity-induced systemic metabolic dysregulation, as well as lipid accumulation and impaired insulin signaling in hepatic and cardiac tissues. Conclusions: Our data indicate that the NLRP3 inflammasome modulates cardiac concentric remodeling in obesity through effects on systemic inflammation and metabolic disturbances, with effect on insulin signaling as a potential mediator within the myocardium.publishedVersio

    Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors

    Get PDF
    Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the oresund-Kattegat-Skagerrak (oKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skane region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia

    Absence of NLRP3 Inflammasome in Hematopoietic Cells Reduces Adverse Remodeling After Experimental Myocardial Infarction

    Get PDF
    An inflammatory response is required for tissue healing after a myocardial infarction (MI), but the process must be balanced to prevent maladaptive remodeling. This study shows that improved survival and cardiac function following MI, in mice deficient for the NLRP3 inflammasome, can be recapitulated in wild-type mice receiving bone marrow from Nlrp3−/− mice. This suggests that NLRP3 activation in hematopoietic cells infiltrating in the myocardium increases mortality and late ventricular remodeling. Our data should encourage performing clinical trials directly targeting NLRP3 inflammasome and their inflammatory cytokines (interleukin-1β and -18) in MI patients.publishedVersionSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

    Sustained Toll-like receptor 9 activation promotes systemic and cardiac inflammation, and aggravates diastolic heart failure in SERCA2a KO mice

    Get PDF
    Aim Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. Methods and Results Diastolic heart failure was established in 8–10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. Conclusion Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure

    Mammalian target of rapamycin (mTOR) and the proteasome attenuates IL-1β expression in primary mouse cardiac fibroblasts

    No full text
    Background: IL-1β is a highly potent pro-inflammatory cytokine and its secretion is tightly regulated. Inactive pro-IL-1β is transcribed in response to innate immune receptors activating NFκB. If tissue damage occurs, danger signals released from necrotic cells, such as ATP, can activate NLRP3-inflammasomes (multiprotein complexes consisting of NLRP3, ASC, and active caspase-1) which cleaves and activates pro-IL-1β. NLRP3 activation also depends on NEK7 and mitochondrial ROS-production. Thus, IL-1β secretion may be regulated at the level of each involved component. We have previously shown that NLRP3-dependent IL-1β release can be induced in cardiac fibroblasts by pro-inflammatory stimuli. However, anti-inflammatory mechanisms targeting IL-1β release in cardiac cells have not been investigated. mTOR is a key regulator of protein metabolism, including autophagy and proteasome activity. In this study we explored whether autophagy or proteasomal degradation are regulators of NLRP3 inflammasome activation and IL-1β release from cardiac fibroblasts. Methods and Results: Serum starvation selectively reduced LPS/ATP-induced IL-1β secretion from cardiac fibroblasts. However, no other inflammasome components, nor mitochondrial mass, were affected. The mTOR inhibitor rapamycin restored pro-IL-1β protein levels as well as LPS/ATP-induced IL-1β release from serum starved cells. However, neither serum starvation nor rapamycin induced autophagy in cardiac fibroblasts. Conversely, chloroquine and bafilomycin A (inhibitors of autophagy) and betulinic acid (a proteasome activator) effectively reduced LPS-induced pro-IL-1β protein levels. Key findings were reinvestigated in human monocyte-derived macrophages. Conclusion: In cardiac fibroblasts, mTOR inhibition selectively favors pro-IL-1β synthesis while proteasomal degradation and not autophagy is the major catabolic anti-inflammatory mechanism for degradation of this cytokine
    corecore