324 research outputs found
Computing Small Certificates of Inconsistency of Quadratic Fewnomial Systems
B{\'e}zout 's theorem states that dense generic systems of n multivariate
quadratic equations in n variables have 2 n solutions over algebraically closed
fields. When only a small subset M of monomials appear in the equations
(fewnomial systems), the number of solutions may decrease dramatically. We
focus in this work on subsets of quadratic monomials M such that generic
systems with support M do not admit any solution at all. For these systems,
Hilbert's Nullstellensatz ensures the existence of algebraic certificates of
inconsistency. However, up to our knowledge all known bounds on the sizes of
such certificates -including those which take into account the Newton polytopes
of the polynomials- are exponential in n. Our main results show that if the
inequality 2|M| -- 2n \sqrt 1 + 8{\nu} -- 1 holds for a quadratic
fewnomial system -- where {\nu} is the matching number of a graph associated
with M, and |M| is the cardinality of M -- then there exists generically a
certificate of inconsistency of linear size (measured as the number of
coefficients in the ground field K). Moreover this certificate can be computed
within a polynomial number of arithmetic operations. Next, we evaluate how
often this inequality holds, and we give evidence that the probability that the
inequality is satisfied depends strongly on the number of squares. More
precisely, we show that if M is picked uniformly at random among the subsets of
n + k + 1 quadratic monomials containing at least (n 1/2+)
squares, then the probability that the inequality holds tends to 1 as n grows.
Interestingly, this phenomenon is related with the matching number of random
graphs in the Erd{\"o}s-Renyi model. Finally, we provide experimental results
showing that certificates in inconsistency can be computed for systems with
more than 10000 variables and equations.Comment: ISSAC 2016, Jul 2016, Waterloo, Canada. Proceedings of ISSAC 201
Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel
We discuss a novel kind of nonlinear coupler with one channel filled with a
negative index material (NIM). The opposite directionality of the phase
velocity and the energy flow in the NIM channel facilitates an effective
feedback mechanism that leads to optical bistability and gap soliton formation
Renormalization Group Theory for a Perturbed KdV Equation
We show that renormalization group(RG) theory can be used to give an analytic
description of the evolution of a perturbed KdV equation. The equations
describing the deformation of its shape as the effect of perturbation are RG
equations. The RG approach may be simpler than inverse scattering theory(IST)
and another approaches, because it dose not rely on any knowledge of IST and it
is very concise and easy to understand. To the best of our knowledge, this is
the first time that RG has been used in this way for the perturbed soliton
dynamics.Comment: 4 pages, no figure, revte
Second harmonic generation: Goursat problem on the semi-strip and explicit solutions
A rigorous and complete solution of the initial-boundary-value (Goursat)
problem for second harmonic generation (and its matrix analog) on the
semi-strip is given in terms of the Weyl functions. A wide class of the
explicit solutions and their Weyl functions is obtained also.Comment: 20 page
Gurevich-Zybin system
We present three different linearizable extensions of the Gurevich-Zybin
system. Their general solutions are found by reciprocal transformations. In
this paper we rewrite the Gurevich-Zybin system as a Monge-Ampere equation. By
application of reciprocal transformation this equation is linearized.
Infinitely many local Hamiltonian structures, local Lagrangian representations,
local conservation laws and local commuting flows are found. Moreover, all
commuting flows can be written as Monge-Ampere equations similar to the
Gurevich-Zybin system. The Gurevich-Zybin system describes the formation of a
large scale structures in the Universe. The second harmonic wave generation is
known in nonlinear optics. In this paper we prove that the Gurevich-Zybin
system is equivalent to a degenerate case of the second harmonic generation.
Thus, the Gurevich-Zybin system is recognized as a degenerate first negative
flow of two-component Harry Dym hierarchy up to two Miura type transformations.
A reciprocal transformation between the Gurevich-Zybin system and degenerate
case of the second harmonic generation system is found. A new solution for the
second harmonic generation is presented in implicit form.Comment: Corrected typos and misprint
Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering
By using the inverse spectral transform, the SRS equations are solved and the
explicit output data is given for arbitrary laser pump and Stokes seed profiles
injected on a vacuum of optical phonons. For long duration laser pulses, this
solution is modified such as to take into account the damping rate of the
optical phonon wave. This model is used to interprete the experiments of Druhl,
Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular
the creation of a spike of (anomalous) pump radiation. The related nonlinear
Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike
is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page
Completely integrable models of non-linear optics
The models of the non-linear optics in which solitons were appeared are
considered. These models are of paramount importance in studies of non-linear
wave phenomena. The classical examples of phenomena of this kind are the
self-focusing, self-induced transparency, and parametric interaction of three
waves. At the present time there are a number of the theories based on
completely integrable systems of equations, which are both generations of the
original known models and new ones. The modified Korteweg-de Vries equation,
the non- linear Schrodinger equation, the derivative non-linear Schrodinger
equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota
equation, the principal chiral field equations, and the equations of massive
Thirring model are gradually putting together a list of soliton equations,
which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana
Chiral Solitons in a Current Coupled Schr\"odinger Equation With Self Interaction
Recently non-topological chiral soliton solutions were obtained in a
derivatively coupled non-linear Schr\"odinger model in 1+1 dimensions. We
extend the analysis to include a more general self-coupling potential (which
includes the previous cases) and find chiral soliton solutions. Interestingly
even the magnitude of the velocity is found to be fixed. Energy and U(1) charge
associated with this non-topological chiral solitons are also obtained.Comment: 8 pages, no figure, to appear in Phys. Rev.
- …
