62,500 research outputs found

    Gas Dynamics of the Nickel-56 Decay Heating in Pair-Instability Supernovae

    Get PDF
    Very massive 140-260 Msun stars can die as highly-energetic pair-instability supernovae (PI SNe) with energies of up to 100 times those of core-collapse SNe that can completely destroy the star, leaving no compact remnant behind. These explosions can synthesize 0.1300.1-30 Msun of radioactive Ni56, which can cause them to rebrighten at later times when photons due to Ni56 decay diffuse out of the ejecta. However, heat from the decay of such large masses of Ni56 could also drive important dynamical effects deep in the ejecta that are capable of mixing elements and affecting the observational signatures of these events. We have now investigated the dynamical effect of Ni56 heating on PI SN ejecta with high-resolution two-dimensional hydrodynamic simulations performed with the CASTRO code. We find that expansion of the hot Ni56 bubble forms a shell at the base of the silicon layer of the ejecta about 200 days after the explosion but that no hydrodynamical instabilities develop that would mix Ni56 with the Si/O-rich ejecta. However, while the dynamical effects of Ni56 heating may be weak they could affect the observational signatures of some PI SNe by diverting decay energy into internal expansion of the ejecta at the expense of rebrightening at later times.Comment: Accepted to ApJ, 14 page

    Shot noise in magnetic tunnel junctions from first principles

    Full text link
    We compute the shot noise in ballistic and disordered Fe/MgO/Fe tunnel junctions by a wave function-matching method. For tunnel barriers with no more than 5 atomic layers we find a suppression of the Fano factor as a function of the magnetic configuration. For thicker MgO barriers the shot noise is suppressed up to a threshold bias indicating the onset of resonant tunneling. We find excellent agreement with recent experiments when interface disorder is taken into accountComment: 5 pages,5 figure

    Flow in small and large quark-gluon plasma droplets: the role of nucleon substructure

    Full text link
    We study the effects of nucleon substructure on bulk observables in proton-lead collisions at the LHC using Bayesian methodology. Substructure is added to the TRENTO parametric initial condition model using Gaussian nucleons with a variable number of Gaussian partons. We vary the number and width of these partons while recovering the desired inelastic proton-proton cross section and ensemble averaged proton density. We then run the model through a large number of minimum bias hydrodynamic simulations and measure the response of final particle production and azimuthal particle correlations to initial state properties. Once these response functions are determined, we calibrate free parameters of the model using established Bayesian methodology. We comment on the implied viability of the partonic model for describing hydrodynamic behavior in small systems.Comment: proceedings for Quark Matter 201

    Direct reconstruction of dynamical dark energy from observational Hubble parameter data

    Full text link
    Reconstructing the evolution history of the dark energy equation of state parameter w(z)w(z) directly from observational data is highly valuable in cosmology, since it contains substantial clues in understanding the nature of the accelerated expansion of the Universe. Many works have focused on reconstructing w(z)w(z) using Type Ia supernova data, however, only a few studies pay attention to Hubble parameter data. In the present work, we explore the merit of Hubble parameter data and make an attempt to reconstruct w(z)w(z) from them through the principle component analysis approach. We find that current Hubble parameter data perform well in reconstructing w(z)w(z); though, when compared to supernova data, the data are scant and their quality is worse. Both Λ\LambdaCDM and evolving w(z)w(z) models can be constrained within 10%10\% at redshifts z1.5z \lesssim 1.5 and even 5%5\% at redshifts 0.1 \lesssim z \lesssim 1 by using simulated H(z)H(z) data of observational quality.Comment: 25 pages, 11 figure

    Thermal spin-transfer in Fe-MgO-Fe tunnel junctions

    Full text link
    We compute thermal spin transfer torques (TST) in Fe-MgO-Fe tunnel junctions using a first principles wave function-matching method. At room temperature, the TST in a junction with 3 MgO monolayers amounts to 10^-7J/m^2/K, which is estimated to cause magnetization reversal for temperature differences over the barrier of the order of 10 K. The large TST can be explained by multiple scattering between interface states through ultrathin barriers. The angular dependence of the TST can be very skewed, possibly leading to thermally induced high-frequency generation.Comment: 5 pages, 5 figure

    Body composition, IGF1 status, and physical functionality in nonagenarians: implications for osteosarcopenia

    Get PDF
    OBJECTIVES: Body composition alterations occur during aging. The purpose of the present analysis was to explore the functional consequences of the overlap of sarcopenia and osteoporosis, and the potential role of insulin-like growth factor 1 (IGF1) in their development in the oldest old. SETTING AND PARTICIPANTS: Eighty-seven nonagenarians from the Louisiana Healthy Aging Study were included. MEASURES: The definition of sarcopenia was based on appendicular lean mass (ALM). Osteoporosis was diagnosed based on bone mineral density (BMD) T score. Four phenotypes were compared: (1) healthy body composition, that is, nonosteoporotic nonsarcopenic (CO, control group), (2) osteoporotic (O, low BMD T score), (3) sarcopenic (S, low ALM), and (4) osteosarcopenic (OS, low BMD T score and low ALM). Sex- and age-specific IGF1-Standard Deviation Scores (SDS) were calculated. The Continuous Scale-Physical Functional Performance (CS-PFP) test was performed. RESULTS: In OS men, IGF1-SDS values (-0.61 ±0.37 vs -0.04 ± 0.52, P = .02) were lower than those in CO males (control group), whereas IGF1-SDS were similar in the 4 body composition phenotypes in women. In men only, ALM was positively associated with IGF1-SDS values (P = .01) independent of age and C-reactive protein concentration. Regarding bone health, we found no association between IGF1-SDS values and BMD. IGF1-SDS was not associated with functional performance (CS-PFP) in men and women. CONCLUSIONS/IMPLICATIONS: IGF1 sensitivity in skeletal muscle and bone may differ by sex in the oldest old. IGF1 status did not appear to affect physical functionality. Determinants and clinical and functional characteristics of osteosarcopenia need to be further investigated in order to define conclusive diagnostic criteria

    Spin Dependence of Interfacial Reflection Phase Shift at Cu/Co Interface

    Full text link
    The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of our theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu|Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.Comment: 6 papges, 3 figures, accepted by Physical Review

    RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis

    Get PDF
    Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix(®) GeneChip(®) Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity(®) Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression
    corecore