5,186 research outputs found
Use of differentiated THP. 1 cells to mimic nurse-like cells for its pro-survival effect on chronic lymphocytic leukaemia cells
Identification of Interdependent Variables that Influence Coreceptor Switch in R5 SHIV-Infected Macaques
Background: We previously reported that adoption of an “open” envelope glycoprotein (Env) to expose the CD4 binding site for efficient receptor binding and infection of cell targets such as macrophages that express low levels of the receptor represents an early event in the process of coreceptor switch in two rapidly progressing (RP) R5 SHIV-infected rhesus macaques, releasing or reducing Env structural constraints that have been suggested to limit the pathways available for a change in coreceptor preference. Here we extended these studies to two additional RP monkeys with coreceptor switch and three without to confirm and identify additional factors that facilitated the process of phenotypic conversion. Results: We found that regardless of coreceptor switching, R5 viruses in SHIV-infected RP macaques evolved over time to infect macrophages more efficiently; this was accompanied by increased sCD4 sensitivity, with structural changes in the CD4 binding site, the V3 loop and/or the fusion domain of their Envs that are suggestive of better CD4 contact, CCR5 usage and/or virus fusion. However, sCD4-sensitive variants with improved CD4 binding were observed only in RPs with coreceptor switch. Furthermore, cumulative viral load was higher in RPs with than in those without phenotypic switch, with the latter maintaining a longer period of seroconversion. Conclusions: Our data suggest that the increased virus replication in the RPs with R5-to-X4 conversion increased the rate of virus evolution and reduction in the availability of target cells with optimal CD4 expression heightened the competition for binding to the receptor. In the absence of immunological restrictions, variants that adopt an “open” Env to expose the CD4 binding site for better CD4 use are selected, allowing structural changes that confer CXCR4-use to be manifested. Viral load, change in target cell population during the course of infection and host immune response therefore are interdependent variables that influence R5 virus evolution and coreceptor switch in SHIV-infected rhesus macaques. Because an "open" Env conformation also renders the virus more susceptible to antibody neutralization, our findings help to explain the infrequent and late appearance of X4 virus in HIV-1 infection when the immune system deteriorates
Recommended from our members
Cytomegalovirus Infection Causes an Increase of Arterial Blood Pressure
Cytomegalovirus (CMV) infection is a common infection in adults (seropositive 60–99% globally), and is associated with cardiovascular diseases, in line with risk factors such as hypertension and atherosclerosis. Several viral infections are linked to hypertension, including human herpes virus 8 (HHV-8) and HIV-1. The mechanisms of how viral infection contributes to hypertension or increased blood pressure are not defined. In this report, the role of CMV infection as a cause of increased blood pressure and in forming aortic atherosclerotic plaques is examined. Using in vivo mouse model and in vitro molecular biology analyses, we find that CMV infection alone caused a significant increase in arterial blood pressure (ABp) (p<0.01 0.05), measured by microtip catheter technique. This increase in blood pressure by mouse CMV (MCMV) was independent of atherosclerotic plaque formation in the aorta, defined by histological analyses. MCMV DNA was detected in blood vessel samples of viral infected mice but not in the control mice by nested PCR assay. MCMV significantly increased expression of pro-inflammatory cytokines IL-6, TNF-, and MCP-1 in mouse serum by enzyme-linked immunosorbent assay (ELISA). Using quantitative real time reverse transcriptase PCR (Q-RT-PCR) and Western blot, we find that CMV stimulated expression of renin in mouse and human cells in an infectious dose-dependent manner. Co-staining and immunofluorescent microscopy analyses showed that MCMV infection stimulated renin expression at a single cell level. Further examination of angiotensin-II (Ang II) in mouse serum and arterial tissues with ELISA showed an increased expression of Ang II by MCMV infection. Consistent with the findings of the mouse trial, human CMV (HCMV) infection of blood vessel endothelial cells (EC) induced renin expression in a non-lytic infection manner. Viral replication kinetics and plaque formation assay showed that an active, CMV persistent infection in EC and expression of viral genes might underpin the molecular mechanism. These results show that CMV infection is a risk factor for increased arterial blood pressure, and is a co-factor in aortic atherosclerosis. Viral persistent infection of EC may underlie the mechanism. Control of CMV infection can be developed to restrict hypertension and atherosclerosis in the cardiovascular system
Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques
Background: Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results: We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4)-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R), 24 (G24R) and 25 (D25K) of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions: The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection pressures and the env evolutionary changes that influence disease outcome, coreceptor switching and vaccine escape
Dynamic spin-lattice coupling and nematic fluctuations in NaFeAs
We use inelastic neutron scattering to study acoustic phonons and spin
excitations in single crystals of NaFeAs, a parent compound of iron pnictide
superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural
transition at K and a collinear antiferromagnetic (AF) order at
K. While longitudinal and out-of-plane transverse acoustic
phonons behave as expected, the in-plane transverse acoustic phonons reveal
considerable softening on cooling to , and then harden on approaching
before saturating below . In addition, we find that spin-spin
correlation lengths of low-energy magnetic excitations within the FeAs layer
and along the -axis increase dramatically below , and show weak anomaly
across . These results suggest that the electronic nematic phase present
in the paramagnetic tetragonal phase is closely associated with dynamic
spin-lattice coupling, possibly arising from the one-phonon-two-magnon
mechanism
- …
