258 research outputs found
COVID-19 causes record decline in global CO2 emissions
The considerable cessation of human activities during the COVID-19 pandemic
has affected global energy use and CO2 emissions. Here we show the
unprecedented decrease in global fossil CO2 emissions from January to April
2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when
compared with the period last year. In addition other emerging estimates of
COVID impacts based on monthly energy supply or estimated parameters, this
study contributes to another step that constructed the near-real-time daily CO2
emission inventories based on activity from power generation (for 29
countries), industry (for 73 countries), road transportation (for 406 cities),
aviation and maritime transportation and commercial and residential sectors
emissions (for 206 countries). The estimates distinguished the decline of CO2
due to COVID-19 from the daily, weekly and seasonal variations as well as the
holiday events. The COVID-related decreases in CO2 emissions in road
transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to
2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%),
residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2,
-15%). Regionally, decreases in China were the largest and earliest (234.5 Mt
CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S.
(162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional
nitrogen oxides concentrations observed by satellites and ground-based
networks, but the calculated signal of emissions decreases (about 1Gt CO2) will
have little impacts (less than 0.13ppm by April 30, 2020) on the overserved
global CO2 concertation. However, with observed fast CO2 recovery in China and
partial re-opening globally, our findings suggest the longer-term effects on
CO2 emissions are unknown and should be carefully monitored using multiple
measures
Twist angle driven electronic structure evolution of twisted bilayer graphene
In twisted bilayer graphene (TBG) devices, local strains often coexist and
entangle with the twist-angle dependent moir\'e superlattice, both of which can
significantly affect the electronic properties of TBG. Here, using
low-temperature scanning tunneling microscopy, we investigate the fine
evolution of the electronic structures of a TBG device with continuous
variation of twist angles from 0.32{\deg} to 1.29{\deg}, spanning the first
(1.1{\deg}), second (0.5{\deg}) and third (0.3{\deg}) magic angles. We reveal
the exotic behavior of the flat bands and remote bands in both the energy space
and real space near the magic angles. Interestingly, we observe an anomalous
spectral weight transfer between the two flat band peaks in the tunneling
spectra when approaching the first magic angle, suggesting strong
inter-flat-bands interactions. The position of the remote band peak can be an
index for the twist angle in TBG, since it positively correlates with the twist
angle but is insensitive to the strain. Moreover, influences of the twist angle
gradient on symmetry breaking of the flat bands are also studied
Terahertz Spin Current Dynamics in Antiferromagnetic Hematite
An important vision of modern magnetic research is to use antiferromagnets (AFMs) as controllable and active ultrafast components in spintronic devices. Hematite (α-Fe2O3) is a promising model material in this respect because its pronounced Dzyaloshinskii-Moriya interaction leads to the coexistence of antiferromagnetism and weak ferromagnetism. Here, femtosecond laser pulses are used to drive terahertz (THz) spin currents from α-Fe2O3 into an adjacent Pt layer. Two contributions to the generation of the spin current with distinctly different dynamics are found: the impulsive stimulated Raman scatting that relies on the AFM order and the ultrafast spin Seebeck effect that relies on the net magnetization. The total THz spin current dynamics can be manipulated by a medium-strength magnetic field below 1 T. The control of the THz spin current achieved in α-Fe2O3 opens the pathway toward tailoring the exact spin current dynamics from ultrafast AFM spin sources
Frequency-selective terahertz wave amplification by a time-boundary-engineered Huygens metasurface
Ultrafast manipulation of optical resonance can establish the time-boundary effect in time-variant media leading to a new degree of freedom for coherent control of electromagnetic waves. Here, we demonstrate that a free-standing all dielectric Huygens metasurface of degenerate electric and magnetic resonances can prompt the broadband near-unity transmission in its static state, whereas it enables wave amplification in the presence of time boundary. The time boundary is realized by femtosecond laser excitations that transiently inject free carriers into the constituent meta-atoms for dynamic removal of a pre-established two-fold degeneracy. We observe that the transmittance in the photo-excited Huygens metasurface can exceed unity transmittance, i.e., THz wave amplification, by a factor over 20% in intensity at frequencies tunable by varying the arrival of time boundary with respect to that of the seed terahertz pulse. By numerical simulations and analysis with time-dependent coupled mode theory, we show that the wave amplification results from the ultrafast Q-switching and shift in resonant frequencies. This work demonstrates a new approach to achieve tunable amplification in an optical microcavity by exploiting the concept of time-variant media and the unique electromagnetic properties of Huygens metasurface
5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation
While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses
Functional Analysis of General Odorant Binding Protein 2 from the Meadow Moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae)
Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults
Recommended from our members
Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
Near-real-time monitoring of global CO₂ emissions reveals the effects of the COVID-19 pandemic
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis
BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer
- …
