8 research outputs found

    Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review

    Full text link
    Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further

    The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

    Get PDF
    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools

    Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice

    Get PDF
    Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic α cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic α cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(−/−)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2–3 months, Gcgr(−/−) mice exhibited normal islet morphology but the islets were mostly composed of α cells. At 5–7 months, dysplastic islets were evident in Gcgr(−/−) mice but absent in WT or heterozygous controls. At 10–12 months, gross PNETs (≥1 mm) were detected in most Gcgr(−/−) pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr(−/−) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(−/−) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(−/−) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes

    Chronic Exposure to GLP-1 Increases GLP-1 Synthesis and Release in a Pancreatic Alpha Cell Line (α-TC1): Evidence of a Direct Effect of GLP-1 on Pancreatic Alpha Cells

    Get PDF
    AIMS/HYPOTHESIS: Incretin therapies, which are used to treat diabetic patients, cause a chronic supra-physiological increase in GLP-1 circulating levels. It is still unclear how the resulting high hormone concentrations may affect pancreatic alpha cells. The present study was designed to investigate the effects of chronic exposure to high GLP-1 levels on a cultured pancreatic alpha cell line. METHODS: α-TC1-6 cell line was cultured in the presence or absence of GLP-1 (100 nmol/l) for up to 72 h. In our model GLP-1 receptor (GLP-1R) was measured. After the cells were exposed to GLP-1 the levels of glucagon secretion were measured. Because GLP-1 acts on intracellular cAMP production, the function of GLP-1R was studied. We also investigated the effects of chronic GLP-1 exposure on the cAMP/MAPK pathway, Pax6 levels, the expression of prohormone convertases (PCs), glucagon gene (Gcg) and protein expression, glucagon and GLP-1 production. RESULTS: In our model, we were able to detect GLP-1R. After GLP-1 exposure we found a reduction in glucagon secretion. During further investigation of the function of GLP-1R, we found an activation of the cAMP/MAPK/Pax6 pathway and an increase of Gcg gene and protein expression. Furthermore we observed a significant increase in PC1/3 protein expression, GLP-1 intracellular content and GLP-1 secretion. CONCLUSIONS/INTERPRETATION: Our data indicate that the chronic exposure of pancreatic alpha cells to GLP-1 increases the ability of these cells to produce and release GLP-1. This phenomenon occurs through the stimulation of the transcription factor Pax6 and the increased expression of the protein convertase PC1/3
    corecore