1,453 research outputs found

    On an algebraic formula and applications to group action on manifolds

    Full text link
    We consider a purely algebraic result. Then given a circle or cyclic group of prime order action on a manifold, we will use it to estimate the lower bound of the number of fixed points. We also give an obstruction to the existence of Zp\mathbb{Z}_p action on manifolds with isolated fixed points when pp is a prime.Comment: 7 pages, revised slightly to update a new reference and reassign the credit of the idea in this not

    Some remarks on circle action on manifolds

    Full text link
    This paper contains several results concerning circle action on almost-complex and smooth manifolds. More precisely, we show that, for an almost-complex manifold M2mnM^{2mn}(resp. a smooth manifold N4mnN^{4mn}), if there exists a partition λ=(λ1,...,λu)\lambda=(\lambda_{1},...,\lambda_{u}) of weight mm such that the Chern number (cλ1...cλu)n[M](c_{\lambda_{1}}... c_{\lambda_{u}})^{n}[M] (resp. Pontrjagin number (pλ1...pλu)n[N](p_{\lambda_{1}}... p_{\lambda_{u}})^{n}[N]) is nonzero, then \emph{any} circle action on M2mnM^{2mn} (resp. N4mnN^{4mn}) has at least n+1n+1 fixed points. When an even-dimensional smooth manifold N2nN^{2n} admits a semi-free action with isolated fixed points, we show that N2nN^{2n} bounds, which generalizes a well-known fact in the free case. We also provide a topological obstruction, in terms of the first Chern class, to the existence of semi-free circle action with \emph{nonempty} isolated fixed points on almost-complex manifolds. The main ingredients of our proofs are Bott's residue formula and rigidity theorem.Comment: 10 pages,to appear in Mathematical Research Letter

    Circle action and some vanishing results on manifolds

    Full text link
    Kawakubo and Uchida showed that, if a closed oriented 4k4k-dimensional manifold MM admits a semi-free circle action such that the dimension of the fixed point set is less than 2k2k, then the signature of MM vanishes. In this note, by using GG-signature theorem and the rigidity of the signature operator, we generalize this result to more general circle actions. Combining the same idea with the remarkable Witten-Taubes-Bott rigidity theorem, we explore more vanishing results on spin manifolds admitting such circle actions. Our results are closely related to some earlier results of Conner-Floyd, Landweber-Stong and Hirzebruch-Slodowy.Comment: 7 pages, typos corrected and minors modifie

    Boltje-Maisch resolutions of Specht modules

    Full text link
    In \cite{21}, Boltje and Maisch found a permutation complex of Specht modules in representation theory of Hecke algebras, which is the same as the Boltje-Hartmann complex appeared in the representation theory of symmetric groups and general linear groups. In this paper we prove the exactness of Boltje-Maisch complex in the dominant weight case.Comment: 17 page
    corecore