929 research outputs found
New Dissipation Relaxation Phenomenon in Oscillating Solid He-4
We describe the first observations on the time-dependent dissipation when the
drive level of a torsional oscillator containing solid He-4 is abruptly
changed. The relaxation of dissipation in solid He-4 shows rich dynamical
behavior including exponential and logarithmic time-dependent decays,
hysteresis, and memory effects.Comment: 4 pages, 4 figure
Thermoresponsive behavior of micellar aggregates from end functionalized PnBA b PNIPAM COOH block copolymers and their complexes with lysozyme
SANS study of hybrid silica aerogels under "in situ" uniaxial compression
We have modified the inorganic silica network of aerogels with polydimethylsiloxane (PDMS), a hydroxyl-terminated polymer, to obtain an organic modified silicate (ORMOSIL). Reactions were assisted by high-power ultrasounds. The resulting gels were dried under supercritical conditions of the solvent to obtain a monolithic sono-aerogel. The mechanical behaviour of these aerogels can be tuned from brittle to rubbery as a function of the organic polymer content. In order to determine the links between the mechanical behaviour and modifications made to the microstructure, SANS (small-angle neutron scattering) experiments were carried out. To measure the intensities under "in situ" uniaxial compression of the aerogel, a specific sample-holder was built. Under uniaxial compression the 2D-diagrams were significantly anisotropic (butterfly pattern), indicating the rearrangement of the polymer. The form factor of these aerogels is described well by two correlation lengths, small microporous silica clusters surrounded by entangled polymer chains of 6 nm average size (blobs), which form a larger secondary level of agglomerates governed by the "frozen-in" elastic constraints.Comisión Interministerial de Ciencia y Tecnología MAT2005-1583European Commission CT-2003-50592
Location of sugars in multilamellar membranes at low hydration
Severe dehydration is lethal for most biological species. However, there are a number of organisms which have evolved mechanisms to avoid damage during dehydration. One of these mechanisms is the accumulation of small solutes (e.g. sugars), which have been shown to preserve membranes by inhibiting deleterious phase changes at low hydration. Specifically, sugars reduce the gel to fluid phase transition temperatures of model lipid/water mixtures. However, there is a debate about the precise mechanism, the resolution of which hinges on the location of the sugars. In excess water, it has been observed using contrast variation SANS that the sugar concentration in the excess phase is higher than in the interlamellar region [Deme and Zemb, J. Appl. Crystallog. 33 (2000) 569]. This raises two questions regarding the location of the sugars at low hydrations: first, does the system phase separate to give a sugar/water phase in equilibrium with a lipid/water/sugar lamellar region (with different sugar concentrations); and second, is the sugar in the interlamellar region uniformly distributed, or does it concentrate preferentially either in close proximity to the lipids, or towards the center of the interbilayer region. In this paper we present the preliminary results of measurements using contrast variation SANS to determine the location of sugars in lipid/water mixtures
Dynamics of field induced ordering in magnetic colloids studied by new time resolved small angle neutron scattering techniques
Long-range crystalline nature of the skyrmion lattice in MnSi
We report small angle neutron scattering of the skyrmion lattice in MnSi
using an experimental set-up that minimizes the effects of demagnetizing fields
and double scattering. Under these conditions the skyrmion lattice displays
resolution-limited Gaussian rocking scans that correspond to a magnetic
correlation length in excess of several hundred {\mu}m. This is consistent with
exceptionally well-defined long-range order. We further establish the existence
of higher-order scattering, discriminating parasitic double-scattering with
Renninger scans. The field and temperature dependence of the higher-order
scattering arises from an interference effect. It is characteristic for the
long-range crystalline nature of the skyrmion lattice as shown by simple mean
field calculations.Comment: 4 page
Large Scales - Long Times: Adding High Energy Resolution to SANS
The Neutron Spin Echo (NSE) variant MIEZE (Modulation of IntEnsity by Zero
Effort), where all beam manipulations are performed before the sample position,
offers the possibility to perform low background SANS measurements in strong
magnetic fields and depolarising samples. However, MIEZE is sensitive to
differences \DeltaL in the length of neutron flight paths through the
instrument and the sample. In this article, we discuss the major influence of
\DeltaL on contrast reduction of MIEZE measurements and its minimisation.
Finally we present a design case for enhancing a small-angle neutron scattering
(SANS) instrument at the planned European Spallation Source (ESS) in Lund,
Sweden, using a combination of MIEZE and other TOF options, such as TISANE
offering time windows from ns to minutes. The proposed instrument allows
studying fluctuations in depolarizing samples, samples exposed to strong
magnetic fields, and spin-incoherently scattering samples in a straightforward
way up to time scales of \mus at momentum transfers up to 0.01 {\AA}-1, while
keeping the instrumental effort and costs low.Comment: 5 pages, 8 figure
Olympic Collision
It remains one of the most memorable moments in modern Olympic history. At the 1984 summer games in Los Angeles, a raucous crowd of ninety thousand saw their favorite in the women’s 3,000-meter race, Mary Decker, go down. An audience of two billion around the world witnessed the mishap and listened to the instantaneous accusations against the suspected culprit, Zola Budd.Just seventeen, the South African Budd had already been the target of a vicious and vocal campaign by the antiapartheid lobby after she transferred to the British team in order to compete at the games. Decker, at twenty-six, was America’s golden girl, ready to overcome years of bad luck and injuries to rightfully take the Olympic gold for which she had waited so long. With three laps to go, Decker and Budd’s feet became tangled. Decker went down and didn’t get up, wailing in primal agony as her gold medal hopes vanished. Decker’s stumbles continued in the race’s aftermath when she refused Budd’s apology and race officials found her, not Budd, at fault for the collision. Although both women found success after the Olympics, neither could escape the long shadow of the infamous event that forever changed both of their lives and defines them in popular culture to this day.Olympic Collision follows Decker and Budd through their lives and careers, telling the story behind the controversy; the account that emerges is certain to revise the view Americans, in particular, have held since that fateful day in Los Angeles more than thirty years ago. Olympic Collision relives one of the most famous incidents in Olympic history, its legacy, and what has happened to both athletes since
Explicit factorization of external coordinates in constrained Statistical Mechanics models
If a macromolecule is described by curvilinear coordinates or rigid
constraints are imposed, the equilibrium probability density that must be
sampled in Monte Carlo simulations includes the determinants of different
mass-metric tensors. In this work, we explicitly write the determinant of the
mass-metric tensor G and of the reduced mass-metric tensor g, for any molecule,
general internal coordinates and arbitrary constraints, as a product of two
functions; one depending only on the external coordinates that describe the
overall translation and rotation of the system, and the other only on the
internal coordinates. This work extends previous results in the literature,
proving with full generality that one may integrate out the external
coordinates and perform Monte Carlo simulations in the internal conformational
space of macromolecules. In addition, we give a general mathematical argument
showing that the factorization is a consequence of the symmetries of the metric
tensors involved. Finally, the determinant of the mass-metric tensor G is
computed explicitly in a set of curvilinear coordinates specially well-suited
for general branched molecules.Comment: 22 pages, 2 figures, LaTeX, AMSTeX. v2: Introduccion slightly
extended. Version in arXiv is slightly larger than the published on
- …
