288 research outputs found

    Investigating the source of Planck-detected AME: high resolution observations at 15 GHz

    Get PDF
    The Planck 28.5 GHz maps were searched for potential Anomalous Microwave Emission (AME) regions on the scale of 3\sim3^{\circ} or smaller, and several new regions of interest were selected. Ancillary data at both lower and higher frequencies were used to construct spectral energy distributions (SEDs), which seem to confirm an excess consistent with spinning dust models. Here we present higher resolution observations of two of these new regions with the Arcminute Microkelvin Imager Small Array (AMI SA) between 14 and 18 GHz to test for the presence of a compact (\sim10 arcmin or smaller) component. For AME-G107.1+5.2, dominated by the {\sc Hii} region S140, we find evidence for the characteristic rising spectrum associated with the either the spinning dust mechanism for AME or an ultra/hyper-compact \textsc{Hii} region across the AMI frequency band, however for AME-G173.6+2.8 we find no evidence for AME on scales of 210\sim 2-10 arcmin.Comment: 13 pages, 8 figures, 4 tables. Submitted to Advances in Astronomy AME Special Issu

    Characterization of Optical Frequency Transfer Over 154 km of Aerial Fiber

    Get PDF
    We present measurements of the frequency transfer stability and analysis of the noise characteristics of an optical signal propagating over aerial suspended fiber links up to 153.6 km in length. The measured frequency transfer stability over these links is on the order of 10^-11 at an integration time of one second dropping to 10^-12 for integration times longer than 100 s. We show that wind-loading of the cable spans is the dominant source of short-timescale noise on the fiber links. We also report an attempt to stabilize the optical frequency transfer over these aerial links.Comment: 4 pages, submitted to Optics Letter

    Effect of gain and phase errors on SKA1-low imaging quality from 50-600 MHz

    Full text link
    Simulations of SKA1-low were performed to estimate the noise level in images produced by the telescope over a frequency range 50-600 MHz, which extends the 50-350 MHz range of the current baseline design. The root-mean-square (RMS) deviation between images produced by an ideal, error-free SKA1-low and those produced by SKA1-low with varying levels of uncorrelated gain and phase errors was simulated. The residual in-field and sidelobe noise levels were assessed. It was found that the RMS deviations decreased as the frequency increased. The residual sidelobe noise decreased by a factor of ~5 from 50 to 100 MHz, and continued to decrease at higher frequencies, attributable to wider strong sidelobes and brighter sources at lower frequencies. The thermal noise limit is found to range between ~10 - 0.3 μ\muJy and is reached after ~100-100 000 hrs integration, depending on observation frequency, with the shortest integration time required at ~100 MHz.Comment: 23 pages, 11 figures Typo correcte

    Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations

    Full text link
    We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the presence of primary CMB signal, radio point sources (detected as well as an unresolved background) and receiver noise, show that our algorithm is able to analyse jointly the data from six frequency channels, sample the posterior space of the model and calculate the Bayesian evidence very efficiently on a single processor. We also illustrate the robustness of our detection process by applying it to a field with radio sources and primordial CMB but no cluster, and show that indeed no cluster is identified. The extension of our methodology to the detection and modelling of multiple clusters in multi-frequency SZ survey data will be described in a future work.Comment: 12 pages, 7 figures, submitted to MNRA

    Aperture Array Configurations for SKA1 Core

    Full text link
    This memo considers some aspects of the configuration of the SKA1 Low Frequency Aperture Array, both at the element and station level. At the element level I propose a possible scenario for forming station beams where elements are shared between stations and apodisation is implemented, with the aim of improving filling factor, overall sensitivity and sidelobe performance; the disadvantages of such a scheme with regards to beam former requirements and shortest available baseline are also discussed. At the station level, a randomised configuration within a filled central region together with spiral arms is explored

    Astronomical verification of a stabilized frequency reference transfer system for the Square Kilometre Array

    Get PDF
    In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase-noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in "astronomical verification" tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase-noise of the sky signal from the data, allowing the phase-noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase-drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 GHz and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements under a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.Comment: 12 pages, accepted to The Astronomical Journa

    Mass and pressure constraints on galaxy clusters from interferometric SZ observations

    Full text link
    Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure

    Frequency Reference Stability and Coherence Loss in Radio Astronomy Interferometers Application to the SKA

    Get PDF
    The requirements on the stability of the frequency reference in the Square Kilometre Array (SKA), as a radio astronomy interferometer, are given in terms of maximum accepted degree of coherence loss caused by the instability of the frequency reference. In this paper we analyse the relationship between the characterisation of the instability of the frequency reference in the radio astronomy array and the coherence loss. The calculation of the coherence loss from the instability characterisation given by the Allan deviation is reviewed. Some practical aspects and limitations are analysed.Comment: 14 page

    Cosmology from Cluster SZ and Weak Lensing Data

    Full text link
    Weak gravitational lensing and the Sunyaev-Zel'dovich effect provide complementary information on the composition of clusters of galaxies. Preliminary results from cluster SZ observations with the Very Small Array are presented. A Bayesian approach to combining this data with wide field lensing data is then outlined; this allows the relative probabilities of cluster models of varying complexity to be computed. A simple simulation is used to demonstrate the importance of cluster model selection in cosmological parameter determination.Comment: 4 pages, 4 figures, to appear in proceedings of XXXVIIth Rencontres de Moriond, "The Cosmological Model"; h-depebndence corrected, typos fixe
    corecore