5,485 research outputs found
Quantum interference and the spin orbit interaction in mesoscopic normal-superconducting junctions
We calculate the quantum correction to the classical conductance of a
disordered mesoscopic normal-superconducting (NS) junction in which the
electron spatial and spin degrees of freedom are coupled by an appreciable spin
orbit interaction. We use random matrix theory to describe the scattering in
the normal part of the junction and consider both quasi-ballistic and diffusive
junctions. The dependence of the junction conductance on the Schottky barrier
transparency at the NS interface is also considered. We find that the quantum
correction is sensitive to the breaking of spin rotation symmetry even when the
junction is in a magnetic field and time reversal symmetry is broken. We
demonstrate that this sensitivity is due to quantum interference between
scattering processes which involve electrons and holes traversing closed loops
in the same direction. We explain why such processes are sensitive to the spin
orbit interaction but not to a magnetic field. Finally we consider the effect
of the spin orbit interaction on the phenomenon of ``reflectionless
tunnelling.''Comment: Revised version, one new figure and revised text. This is the final
version which will appear in Journal de Physqiue 1. Latex plus six postscript
figure
Analysis of methods
Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment
Phylogenetic relationships of the newly discovered sexual state of Talaromyces flavovirens, comb. nov.
Typical Talaromyces ascomata were observed on dry Quercus suber leaf litter amongst the characteristic synnemata of Penicillium aureocephalum, and they appear to represent the sexual state of the latter species. The species is a synonym of the older Lasioderma flavovirens, and we propose the new combination Talaromyces flavovirens. Lectotype and epitype specimens are designated for this name. The defining characters of the asexual state include yellow, short-stalked, mycetozoan-like synnemata with an unusual, almost closed terminal head of penicillate conidiophores intermixed with sinuous hyphae, and dark green conidia. Ascomata could not be induced in culture, but PCR amplifications of mating-type genes indicate the species is heterothallic. In nature, ascocarp initials appear to be antheridia coiled around clavate ascogonia, similar to those of T. flavus, and the thick-walled, spiny ascospores are also similar to those of T. flavus. ITS barcodes and β-tubulin sequences place T. flavovirens in a clade with T. apiculatus, T. flavus, T. funiculosus, T. galapagensis, T. pinophilus, T. macrosporus, and seven other species
Anchored boundary conditions for locally isostatic networks
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface, the network can be rendered {\it{effectively isostatic}}. We refer to these as {\it{anchored boundary conditions}}. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic, is by adding an external wire along which all unpinned vertices can slide ({\it{sliding boundary conditions}}). This approach also allows for the incorporation of boundaries associated with internal {\it{holes}} and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level needs such boundary conditions, if the observed structure is to be computer-refined so that the interior atoms have the perception of being in an infinite isostatic environment
Glycated haemoglobin A1c (HbA1c) for detection of diabetes mellitus and impaired fasting glucose in Malawi: a diagnostic accuracy study.
OBJECTIVES: To examine the accuracy of glycated haemoglobin A1c (HbA1c) in detecting type 2 diabetes and impaired fasting glucose among adults living in Malawi. DESIGN: A diagnostic validation study of HbA1c. Fasting plasma glucose (FPG) ≥7.0 mmol/L was the reference standard for type 2 diabetes, and FPG between 6.1 and 6.9 mmol/L as impaired fasting glucose. PARTICIPANTS: 3645 adults (of whom 63% were women) recruited from two demographic surveillance study sites in urban and rural Malawi. This analysis excluded those who had a previous diagnosis of diabetes or had history of taking diabetes medication. RESULTS: HbA1c demonstrated excellent validity to detect FPG-defined diabetes, with an area under the receiver operating characteristic (AUROC) curve of 0.92 (95% CI 0.90 to 0.94). At HbA1c ≥6.5% (140 mg/dL), sensitivity was 78.7% and specificity was 94.0%. Subgroup AUROCs ranged from 0.86 for participants with anaemia to 0.94 for participants in urban Malawi. There were clinical and metabolic differences between participants with true diabetes versus false positives when HbA1c was ≥6.5% (140 mg/dL). CONCLUSIONS: The findings from this study provide justification to use HbA1c to detect type 2 diabetes. As HbA1c testing is substantially less burdensome to patients than either FPG testing or oral glucose tolerance testing, it represents a useful option for expanding access to diabetes care in sub-Saharan Africa
Equipment for tunnel installation of main and insertion LHC cryo-magnet
The installation of about 1700 superconducting dipoles and quadrupoles in the Large Hadron Collider (LHC) is now well underway. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets have required development of completely new handling solutions. The severe space constraints combined with the long, heavy loads have meant that solutions had to be very sophisticated. The paper describes the procedure of the installation of the main cryo-magnets in the arc as well as the more specific insertion cryo-magnets. The logistics for the handling and transport are monitored with tri-axial acceleration monitoring devices that are installed on each cryo-magnet to ensure their mechanical and geometric integrity. These dynamic results are commented. The paper includes conclusions and some lessons learne
First Principles NMR Study of Fluorapatite under Pressure
NMR is the technique of election to probe the local properties of materials.
Herein we present the results of density functional theory (DFT) \textit{ab
initio} calculations of the NMR parameters for fluorapatite (FAp), a calcium
orthophosphate mineral belonging to the apatite family, by using the GIPAW
method [Pickard and Mauri, 2001]. Understanding the local effects of pressure
on apatites is particularly relevant because of their important role in many
solid state and biomedical applications. Apatites are open structures, which
can undergo complex anisotropic deformations, and the response of NMR can
elucidate the microscopic changes induced by an applied pressure. The computed
NMR parameters proved to be in good agreement with the available experimental
data. The structural evaluation of the material behavior under hydrostatic
pressure (from --5 to +100 kbar) indicated a shrinkage of the diameter of the
apatitic channel, and a strong correlation between NMR shielding and pressure,
proving the sensitivity of this technique to even small changes in the chemical
environment around the nuclei. This theoretical approach allows the exploration
of all the different nuclei composing the material, thus providing a very
useful guidance in the interpretation of experimental results, particularly
valuable for the more challenging nuclei such as Ca and O.Comment: 8 pages, 2 figures, 3 table
- …
