7,933 research outputs found

    The domestication of the probiotic bacterium Lactobacillus acidophilus

    Get PDF
    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population

    Platelet-Derived Growth Factor Preserves Retinal Synapses in a Rat Model of Ocular Hypertension.

    Get PDF
    PURPOSE: Platelet-derived growth factor (PDGF) promotes neuronal survival in experimental glaucoma and recruits glial cells that regulate synapses. We investigated the effects of intravitreal PDGF on the inflammatory milieu and retinal synapses in the presence of raised IOP. METHODS: Animals with laser-induced IOP elevation received intravitreal injections of either saline or 1.5 μg PDGF. At 7 days, a further intravitreal injection was administered so groups received "PDGF-saline" (n = 15), "PDGF-PDGF" (n = 13), or "saline-saline" (n = 20). Platelet-derived growth factor receptor activation was assessed after 2 weeks using Western blot for PI3 kinase. Immunohistochemistry was performed for markers of synapses in the inner plexiform layer (IPL): PSD-95, GluR1, SY38; RGCs: βIII-tubulin, and glial cells: Iba-1, CD45. Real-time quantitative polymerase chain reaction (qPCR) was performed for Arc, selp, MCP-1, IL-6, IL-10, and CX3CR1 (n = 13). RESULTS: A single injection of PDGF increased IPL synaptic density in high IOP eyes (PSD-95 = 8.65 ± 0.43, SY38 = 8.68 ± 0.51, GluR1 = 9.03 ± 0.60 puncta/μm3, P < 0.001) and expression of synaptic modulator Arc (6.92 ± 3.71-fold change/control, P < 0.05) in comparison with vehicle (PSD-95 = 4.59 ± 0.41, SY38 = 4.46 ± 0.38, GluR1 = 5.94 ± 0.50 puncta/μm3, Arc = 1.46 ± 0.31-fold/control). This was associated with more resident microglia (8.16 ± 1.34-fold change/control, P < 0.001) and infiltrating monocyte-derived macrophages in the retina as well as increased Selp expression (26.8 ± 14.12-fold change/control, P < 0.05). Optic nerve head (ONH) showed an increased microglia (saline = 1.44 ± 0.13 versus PDGF = 2.23 ± 0.18-fold change/control, P < 0.01) but not infiltrating macrophages. IL-10 expression was significantly increased in PDGF-treated eyes (5.43 ± 0.47-fold change/control, P < 0.05) relative to vehicle (2.51 ± 0.67-fold change/control). CONCLUSIONS: Platelet-derived growth factor increased microglial and monocyte-derived macrophage populations in the eye and protected intraretinal synapses from degeneration in our experimental glaucoma model.Supported by the Agency for Science Technology and Research Singapore (RC), the Cambridge Eye Trust, the HB Allen Charitable Trust and the Jukes Glaucoma Research Fund, and by Grant 1868 from Fight for Sight (KM).This is the final version of the article. It first appeared from the Association for Research in Vision and Opthalmology via http://dx.doi.org/10.1167/iovs.15-1786

    Investigating the medium range order in amorphous Ta<sub>2</sub>O<sub>5</sub> coatings

    Get PDF
    Ion-beam sputtered amorphous heavy metal oxides, such as Ta2O5, are widely used as the high refractive index layer of highly reflective dielectric coatings. Such coatings are used in the ground based Laser Interferometer Gravitational-wave Observatory (LIGO), in which mechanical loss, directly related to Brownian thermal noise, from the coatings forms an important limit to the sensitivity of the LIGO detector. It has previously been shown that heat-treatment and TiO2 doping of amorphous Ta2O5 coatings causes significant changes to the levels of mechanical loss measured and is thought to result from changes in the atomic structure. This work aims to find ways to reduce the levels of mechanical loss in the coatings by understanding the atomic structure properties that are responsible for it, and thus helping to increase the LIGO detector sensitivity. Using a combination of Reduced Density Functions (RDFs) from electron diffraction and Fluctuation Electron Microscopy (FEM), we probe the medium range order (in the 2-3 nm range) of these amorphous coatings

    Catastrophic chromosomal restructuring during genome elimination in plants.

    Get PDF
    Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders

    Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture

    Get PDF
    This study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Support was provided by the EPSRC (EP/K020196: Point-ofCare High Accuracy Fracture Risk Prediction), the UK Department of Transport under the BOSCOS (Bone Scanning for Occupant Safety) project, and approved by Gloucester and Cheltenham NHS Trust hospitals under ethical consent (BOSCOS – Mr. Curwen CI REC ref 01/179G)

    Retinal ganglion cell survival and axon regeneration in WldS transgenic rats after optic nerve crush and lens injury.

    Get PDF
    BACKGROUND: We have previously shown that the slow Wallerian degeneration mutation, whilst delaying axonal degeneration after optic nerve crush, does not protect retinal ganglion cell (RGC) bodies in adult rats. To test the effects of a combination approach protecting both axons and cell bodies we performed combined optic nerve crush and lens injury, which results in both enhanced RGC survival as well as axon regeneration past the lesion site in wildtype animals. RESULTS: As previously reported we found that the Wld(S) mutation does not protect RGC bodies after optic nerve crush alone. Surprisingly, we found that Wld(S) transgenic rats did not exhibit the enhanced RGC survival response after combined optic nerve crush and lens injury that was observed in wildtype rats. RGC axon regeneration past the optic nerve lesion site was, however, similar in Wld(S) and wildtypes. Furthermore, activation of retinal glia, previously shown to be associated with enhanced RGC survival and axon regeneration after optic nerve crush and lens injury, was unaffected in Wld(S) transgenic rats. CONCLUSIONS: RGC axon regeneration is similar between Wld(S) transgenic and wildtype rats, but Wld(S) transgenic rats do not exhibit enhanced RGC survival after combined optic nerve crush and lens injury suggesting that the neuroprotective effects of lens injury on RGC survival may be limited by the Wld(S) protein.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    ISS Solar Array Management

    Get PDF
    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations
    corecore