71 research outputs found

    Magneto-infrared modes in InAs-AlSb-GaSb coupled quantum wells

    Full text link
    We have studied a series of InAs/GaSb coupled quantum wells using magneto-infrared spectroscopy for high magnetic fields up to 33T within temperatures ranging from 4K to 45K in both Faraday and tilted field geometries. This type of coupled quantum wells consists of an electron layer in the InAs quantum well and a hole layer in the GaSb quantum well, forming the so-called two dimensional electron-hole bilayer system. Unlike the samples studied in the past, the hybridization of the electron and hole subbands in our samples is largely reduced by having narrower wells and an AlSb barrier layer interposed between the InAs and the GaSb quantum wells, rendering them weakly hybridized. Previous studies have revealed multiple absorption modes near the electron cyclotron resonance of the InAs layer in moderately and strongly hybridized samples, while only a single absorption mode was observed in the weakly hybridized samples. We have observed a pair of absorption modes occurring only at magnetic fields higher than 14T, which exhibited several interesting phenomena. Among which we found two unique types of behavior that distinguishes this work from the ones reported in the literature. This pair of modes is very robust against rising thermal excitations and increasing magnetic fields alligned parallel to the heterostructures. While the previous results were aptly explained by the antilevel crossing gap due to the hybridization of the electron and hole wavefunctions, i.e. conduction-valence Landau level mixing, the unique features reported in this paper cannot be explained within the same concept. The unusual properties found in this study and their connection to the known models for InAs/GaSb heterostructures will be disccused; in addition, several alternative ideas will be proposed in this paper and it appears that a spontaneous phase separation can account for most of the observed features

    Excitonic condensation in a symmetric electron-hole bilayer

    Full text link
    Using Diffusion Monte Carlo simulations we have investigated the ground state of a symmetric electron-hole bilayer and determined its phase diagram at T=0. We find clear evidence of an excitonic condensate, whose stability however is affected by in-layer electronic correlation. This stabilizes the electron-hole plasma at large values of the density or inter-layer distance, and the Wigner crystal at low density and large distance. We have also estimated pair correlation functions and low order density matrices, to give a microscopic characterization of correlations, as well as to try and estimate the condensate fraction.Comment: 4 pages, 3 figures, 2 table

    Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    Full text link
    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the important steps in the derivatio

    Quantum field dynamics of the slow rollover in the linear delta expansion

    Get PDF
    We show how the linear delta expansion, as applied to the slow-roll transition in quantum mechanics, can be recast in the closed time-path formalism. This results in simpler, explicit expressions than were obtained in the Schr\"odinger formulation and allows for a straightforward generalization to higher dimensions. Motivated by the success of the method in the quantum-mechanical problem, where it has been shown to give more accurate results for longer than existing alternatives, we apply the linear delta expansion to four-dimensional field theory. At small times all methods agree. At later times, the first-order linear delta expansion is consistently higher that Hartree-Fock, but does not show any sign of a turnover. A turnover emerges in second-order of the method, but the value of attheturnoverislargerthatthatgivenbytheHartreeFockapproximation.Basedonthiscalculation,andourexperienceinthecorrespondingquantummechanicalproblem,webelievethattheHartreeFockapproximationdoesindeedunderestimatethevalueof at the turnover is larger that that given by the Hartree-Fock approximation. Based on this calculation, and our experience in the corresponding quantum-mechanical problem, we believe that the Hartree-Fock approximation does indeed underestimate the value of at the turnover. In subsequent applications of the method we hope to implement the calculation in the context of an expanding universe, following the line of earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and large-N methods. It seems clear, however, that the method will become unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including second order calculatio

    General transport properties of superconducting quantum point contacts: a Green functions approach

    Full text link
    We discuss the general transport properties of superconducting quantum point contacts. We show how these properties can be obtained from a microscopic model using nonequilibrium Green function techniques. For the case of a one-channel contact we analyze the response under different biasing conditions: constant applied voltage, current bias and microwave-induced transport. Current fluctuations are also analyzed with particular emphasis on thermal and shot-noise. Finally, the case of superconducting transport through a resonant level is discussed. The calculated properties show a remarkable agreement with the available experimental data from atomic-size contacts measurements. We suggest the possibility of extending this comparison to several other predictions of the theory.Comment: 10 pages, revtex, 8 figures, submitted to a special issue of Superlattices and Microstructure

    Finite temperature amplitudes and reaction rates in Thermofield dynamics

    Get PDF
    We propose a method for calculating the reaction rates and transition amplitudes of generic process taking place in a many body system in equilibrium. The relationship of the scattering and decay amplitudes as calculated in Thermo Field Dynamics the conventional techniques is established. It is shown that in many cases the calculations are relatively easy in TFD.Comment: 32 pages, RevTex, 2 PS figures, to appear in Phys. Rev.

    Out-of-equilibrium quantum fields with conserved charge

    Full text link
    We study the out-of-equilibrium evolution of an O(2)-invariant scalar field in which a conserved charge is stored. We apply a loop expansion of the 2-particle irreducible effective action to 3-loop order. Equations of motion are derived which conserve both total charge and total energy yet allow for the effects of scattering whereby charge and energy can transfer between modes. Working in (1+1)-dimensions we solve the equations of motion numerically for a system knocked out of equilibrium by a sudden temperature quench. We examine the initial stages of the charge and energy redistribution. This provides a basis from which we can understand the formation of Bose-Einstein condensates from first principles.Comment: 11 pages, 5 figures, replacement with improved presentatio

    Transient electric current through an Aharonov-Bohm ring after switching of a Two-Level-System

    Full text link
    Response of the electronic current through an Aharonov-Bohm ring after a two-level-system is switched on is calculated perturbatively by use of non-equilibrium Green function. In the ballistic case the amplitude of the Aharonov-Bohm oscillation is shown to decay to a new equilibrium value due to scattering into other electronic states. Relaxation of Altshuler-Aronov-Spivak oscillation in diffusive case due to dephasing effect is also calculated. The time scale of the relaxation is determined by characteristic relaxation times of the system and the splitting of two-level-system. Oscillation phases are not affected. Future experimental studies of current response may give us direct information on characteristic times of mesoscopic systems

    Decoherence of Friedmann-Robertson-Walker Geometries in the Presence of Massive Vector Fields with U(1) or SO(3) Global Symmetries

    Full text link
    Retrieval of classical behaviour in quantum cosmology is usually discussed in the framework of {\em midi}superspace models in the presence of scalar fields and the inhomogeneous modes corresponding either to gravitational or scalar fields. In this work, we propose an alternative model to study the decoherence of homogeneous and isotropic geometries where the scalar field is replaced by a massive vector field with a global internal symmetry. We study here the cases with U(1)U(1) and SO(3)SO(3) global internal symmetries. The presence of a mass term breaks the conformal invariance and allows for the longitudinal modes of the spin-1 field to be present in the Wheeler-DeWitt equation. In the case of the U(1) global internal symmetry, we have only one single ``classical'' degree of freedom while in the case of the SO(3) global symmetry, we are led to consider a simple two-dimensional minisuperspace model. These minisuperspaces are shown to be equivalent to a set of coupled harmonic oscillators where the kinetic term of the longitudinal modes has a coefficient proportional to the inverse of the scale factor. The conditions for a suitable decoherence process and correlations between coordinate and momenta are established. The validity of the semi-classical Einstein equations when massive vector fields (Abelian and non-Abelian) are present is also discussed.Comment: 26 pages, CERN-TH.7241/94 DAMTP R-94/2

    The Effect of low Momentum Quantum Fluctuations on a Coherent Field Structure

    Get PDF
    In the present work the evolution of a coherent field structure of the Sine-Gordon equation under quantum fluctuations is studied. The basic equations are derived from the coherent state approximation to the functional Schr\"odinger equation for the field. These equations are solved asymptotically and numerically for three physical situations. The first is the study of the nonlinear mechanism responsible for the quantum stability of the soliton in the presence of low momentum fluctuations. The second considers the scattering of a wave by the Soliton. Finally the third problem considered is the collision of Solitons and the stability of a breather. It is shown that the complete integrability of the Sine-Gordon equation precludes fusion and splitting processes in this simplified model. The approximate results obtained are non-perturbative in nature, and are valid for the full nonlinear interaction in the limit of low momentum fluctuations. It is also found that these approximate results are in good agreement with full numerical solutions of the governing equations. This suggests that a similar approach could be used for the baby Skyrme model, which is not completely integrable. In this case the higher space dimensionality and the internal degrees of freedom which prevent the integrability will be responsable for fusion and splitting processes. This work provides a starting point in the numerical solution of the full quantum problem of the interaction of the field with a fluctuation.Comment: 15 pages, 9 (ps) figures, Revtex file. Some discussion expanded but conclusions unchanged. Final version to appear in PR
    corecore