71 research outputs found
Magneto-infrared modes in InAs-AlSb-GaSb coupled quantum wells
We have studied a series of InAs/GaSb coupled quantum wells using
magneto-infrared spectroscopy for high magnetic fields up to 33T within
temperatures ranging from 4K to 45K in both Faraday and tilted field
geometries. This type of coupled quantum wells consists of an electron layer in
the InAs quantum well and a hole layer in the GaSb quantum well, forming the
so-called two dimensional electron-hole bilayer system. Unlike the samples
studied in the past, the hybridization of the electron and hole subbands in our
samples is largely reduced by having narrower wells and an AlSb barrier layer
interposed between the InAs and the GaSb quantum wells, rendering them weakly
hybridized. Previous studies have revealed multiple absorption modes near the
electron cyclotron resonance of the InAs layer in moderately and strongly
hybridized samples, while only a single absorption mode was observed in the
weakly hybridized samples. We have observed a pair of absorption modes
occurring only at magnetic fields higher than 14T, which exhibited several
interesting phenomena. Among which we found two unique types of behavior that
distinguishes this work from the ones reported in the literature. This pair of
modes is very robust against rising thermal excitations and increasing magnetic
fields alligned parallel to the heterostructures. While the previous results
were aptly explained by the antilevel crossing gap due to the hybridization of
the electron and hole wavefunctions, i.e. conduction-valence Landau level
mixing, the unique features reported in this paper cannot be explained within
the same concept. The unusual properties found in this study and their
connection to the known models for InAs/GaSb heterostructures will be
disccused; in addition, several alternative ideas will be proposed in this
paper and it appears that a spontaneous phase separation can account for most
of the observed features
Excitonic condensation in a symmetric electron-hole bilayer
Using Diffusion Monte Carlo simulations we have investigated the ground state
of a symmetric electron-hole bilayer and determined its phase diagram at T=0.
We find clear evidence of an excitonic condensate, whose stability however is
affected by in-layer electronic correlation. This stabilizes the electron-hole
plasma at large values of the density or inter-layer distance, and the Wigner
crystal at low density and large distance. We have also estimated pair
correlation functions and low order density matrices, to give a microscopic
characterization of correlations, as well as to try and estimate the condensate
fraction.Comment: 4 pages, 3 figures, 2 table
Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas
Detailed calculations of the contribution from off-shell effects to the
quasiclassical tunneling of fusing particles are provided. It is shown that
these effects change the Gamow rates of certain nuclear reactions in dense
plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the
important steps in the derivatio
Quantum field dynamics of the slow rollover in the linear delta expansion
We show how the linear delta expansion, as applied to the slow-roll
transition in quantum mechanics, can be recast in the closed time-path
formalism. This results in simpler, explicit expressions than were obtained in
the Schr\"odinger formulation and allows for a straightforward generalization
to higher dimensions. Motivated by the success of the method in the
quantum-mechanical problem, where it has been shown to give more accurate
results for longer than existing alternatives, we apply the linear delta
expansion to four-dimensional field theory.
At small times all methods agree. At later times, the first-order linear
delta expansion is consistently higher that Hartree-Fock, but does not show any
sign of a turnover. A turnover emerges in second-order of the method, but the
value of at the
turnover. In subsequent applications of the method we hope to implement the
calculation in the context of an expanding universe, following the line of
earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and
large-N methods. It seems clear, however, that the method will become
unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including
second order calculatio
General transport properties of superconducting quantum point contacts: a Green functions approach
We discuss the general transport properties of superconducting quantum point
contacts. We show how these properties can be obtained from a microscopic model
using nonequilibrium Green function techniques. For the case of a one-channel
contact we analyze the response under different biasing conditions: constant
applied voltage, current bias and microwave-induced transport. Current
fluctuations are also analyzed with particular emphasis on thermal and
shot-noise. Finally, the case of superconducting transport through a resonant
level is discussed. The calculated properties show a remarkable agreement with
the available experimental data from atomic-size contacts measurements. We
suggest the possibility of extending this comparison to several other
predictions of the theory.Comment: 10 pages, revtex, 8 figures, submitted to a special issue of
Superlattices and Microstructure
Finite temperature amplitudes and reaction rates in Thermofield dynamics
We propose a method for calculating the reaction rates and transition
amplitudes of generic process taking place in a many body system in
equilibrium. The relationship of the scattering and decay amplitudes as
calculated in Thermo Field Dynamics the conventional techniques is established.
It is shown that in many cases the calculations are relatively easy in TFD.Comment: 32 pages, RevTex, 2 PS figures, to appear in Phys. Rev.
Out-of-equilibrium quantum fields with conserved charge
We study the out-of-equilibrium evolution of an O(2)-invariant scalar field
in which a conserved charge is stored. We apply a loop expansion of the
2-particle irreducible effective action to 3-loop order. Equations of motion
are derived which conserve both total charge and total energy yet allow for the
effects of scattering whereby charge and energy can transfer between modes.
Working in (1+1)-dimensions we solve the equations of motion numerically for a
system knocked out of equilibrium by a sudden temperature quench. We examine
the initial stages of the charge and energy redistribution. This provides a
basis from which we can understand the formation of Bose-Einstein condensates
from first principles.Comment: 11 pages, 5 figures, replacement with improved presentatio
Transient electric current through an Aharonov-Bohm ring after switching of a Two-Level-System
Response of the electronic current through an Aharonov-Bohm ring after a
two-level-system is switched on is calculated perturbatively by use of
non-equilibrium Green function. In the ballistic case the amplitude of the
Aharonov-Bohm oscillation is shown to decay to a new equilibrium value due to
scattering into other electronic states. Relaxation of Altshuler-Aronov-Spivak
oscillation in diffusive case due to dephasing effect is also calculated. The
time scale of the relaxation is determined by characteristic relaxation times
of the system and the splitting of two-level-system. Oscillation phases are not
affected. Future experimental studies of current response may give us direct
information on characteristic times of mesoscopic systems
Decoherence of Friedmann-Robertson-Walker Geometries in the Presence of Massive Vector Fields with U(1) or SO(3) Global Symmetries
Retrieval of classical behaviour in quantum cosmology is usually discussed in
the framework of {\em midi}superspace models in the presence of scalar fields
and the inhomogeneous modes corresponding either to gravitational or scalar
fields. In this work, we propose an alternative model to study the decoherence
of homogeneous and isotropic geometries where the scalar field is replaced by a
massive vector field with a global internal symmetry. We study here the cases
with and global internal symmetries. The presence of a mass term
breaks the conformal invariance and allows for the longitudinal modes of the
spin-1 field to be present in the Wheeler-DeWitt equation. In the case of the
U(1) global internal symmetry, we have only one single ``classical'' degree of
freedom while in the case of the SO(3) global symmetry, we are led to consider
a simple two-dimensional minisuperspace model. These minisuperspaces are shown
to be equivalent to a set of coupled harmonic oscillators where the kinetic
term of the longitudinal modes has a coefficient proportional to the inverse of
the scale factor. The conditions for a suitable decoherence process and
correlations between coordinate and momenta are established. The validity of
the semi-classical Einstein equations when massive vector fields (Abelian and
non-Abelian) are present is also discussed.Comment: 26 pages, CERN-TH.7241/94 DAMTP R-94/2
The Effect of low Momentum Quantum Fluctuations on a Coherent Field Structure
In the present work the evolution of a coherent field structure of the
Sine-Gordon equation under quantum fluctuations is studied. The basic equations
are derived from the coherent state approximation to the functional
Schr\"odinger equation for the field. These equations are solved asymptotically
and numerically for three physical situations. The first is the study of the
nonlinear mechanism responsible for the quantum stability of the soliton in the
presence of low momentum fluctuations. The second considers the scattering of a
wave by the Soliton. Finally the third problem considered is the collision of
Solitons and the stability of a breather.
It is shown that the complete integrability of the Sine-Gordon equation
precludes fusion and splitting processes in this simplified model.
The approximate results obtained are non-perturbative in nature, and are
valid for the full nonlinear interaction in the limit of low momentum
fluctuations. It is also found that these approximate results are in good
agreement with full numerical solutions of the governing equations. This
suggests that a similar approach could be used for the baby Skyrme model, which
is not completely integrable. In this case the higher space dimensionality and
the internal degrees of freedom which prevent the integrability will be
responsable for fusion and splitting processes. This work provides a starting
point in the numerical solution of the full quantum problem of the interaction
of the field with a fluctuation.Comment: 15 pages, 9 (ps) figures, Revtex file. Some discussion expanded but
conclusions unchanged. Final version to appear in PR
- …
