916 research outputs found

    Useful martingales for stochastic storage processes with L\'{e}vy-type input

    Full text link
    In this paper we generalize the martingale of Kella and Whitt to the setting of L\'{e}vy-type processes and show that the (local) martingales obtained are in fact square integrable martingales which upon dividing by the time index converge to zero a.s. and in L2L^2. The reflected L\'{e}vy-type process is considered as an example.Comment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1112.475

    Two-sided reflected Markov-modulated Brownian motion with applications to fluid queues and dividend payouts

    Get PDF
    In this paper we study a reflected Markov-modulated Brownian motion with a two sided reflection in which the drift, diffusion coefficient and the two boundaries are (jointly) modulated by a finite state space irreducible continuous time Markov chain. The goal is to compute the stationary distribution of this Markov process, which in addition to the complication of having a stochastic boundary can also include jumps at state change epochs of the underlying Markov chain because of the boundary changes. We give the general theory and then specialize to the case where the underlying Markov chain has two states. Moreover, motivated by an application of optimal dividend strategies, we consider the case where the lower barrier is zero and the upper barrier is subject to control. In this case we generalized earlier results from the case of a reflected Brownian motion to the Markov modulated case.Comment: 22 pages, 1 figur

    A new formula for some linear stochastic equations with applications

    Full text link
    We give a representation of the solution for a stochastic linear equation of the form Xt=Yt+(0,t]XsdZsX_t=Y_t+\int_{(0,t]}X_{s-} \mathrm {d}{Z}_s where ZZ is a c\'adl\'ag semimartingale and YY is a c\'adl\'ag adapted process with bounded variation on finite intervals. As an application we study the case where YY and Z-Z are nondecreasing, jointly have stationary increments and the jumps of Z-Z are bounded by 1. Special cases of this process are shot-noise processes, growth collapse (additive increase, multiplicative decrease) processes and clearing processes. When YY and ZZ are, in addition, independent L\'evy processes, the resulting XX is called a generalized Ornstein-Uhlenbeck process.Comment: Published in at http://dx.doi.org/10.1214/09-AAP637 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Queue-length balance equations in multiclass multiserver queues and their generalizations

    Get PDF
    A classical result for the steady-state queue-length distribution of single-class queueing systems is the following: the distribution of the queue length just before an arrival epoch equals the distribution of the queue length just after a departure epoch. The constraint for this result to be valid is that arrivals, and also service completions, with probability one occur individually, i.e., not in batches. We show that it is easy to write down somewhat similar balance equations for {\em multidimensional} queue-length processes for a quite general network of multiclass multiserver queues. We formally derive those balance equations under a general framework. They are called distributional relationships, and are obtained for any external arrival process and state dependent routing as long as certain stationarity conditions are satisfied and external arrivals and service completions do not simultaneously occur. We demonstrate the use of these balance equations, in combination with PASTA, by (i) providing very simple derivations of some known results for polling systems, and (ii) obtaining new results for some queueing systems with priorities. We also extend the distributional relationships for a non-stationary framework

    First passage process of a Markov additive process, with applications to reflection problems

    Get PDF
    In this paper we consider the first passage process of a spectrally negative Markov additive process (MAP). The law of this process is uniquely characterized by a certain matrix function, which plays a crucial role in fluctuation theory. We show how to identify this matrix using the theory of Jordan chains associated with analytic matrix functions. Importantly, our result also provides us with a technique, which can be used to derive various further identities. We then proceed to show how to compute the stationary distribution associated with a one-sided reflected (at zero) MAP for both the spectrally positive and spectrally negative cases as well as for the two sided reflected Markov-modulated Brownian motion; these results can be interpreted in terms of queues with MAP input.Comment: 16 page

    First passage of a Markov additive process and generalized Jordan chains

    Get PDF
    In this paper we consider the first passage process of a spectrally negative Markov additive process (MAP). The law of this process is uniquely characterized by a certain matrix function, which plays a crucial role in fluctuation theory. We show how to identify this matrix using the theory of Jordan chains associated with analytic matrix functions. This result provides us with a technique, which can be used to derive various further identities.Lévy processes, Fluctuation theory, Markov Additive Processes
    corecore