2,425 research outputs found
How important is the context of an adolescent's first alcoholic drink? Evidence that parental provision may reduce later heavy episodic drinking
Objective: This study examined the extent to which a retrospective measure of parental provision of the first alcoholic beverage was related to current heavy episodic drinking and current responsible drinking practices. Sample: 608 14- to 17-year-olds from the 2007 Australian National Drug Strategy Household Survey. Measures: Source of first alcoholic beverage (friends/parents/others), source of current alcohol, age of onset of alcohol use, current responsible drinking practices, and proportion of current friends who drink. Results: Binary logistic and multiple regression procedures revealed that parental provision of an adolescent's first alcoholic beverage predicted lower current heavy episodic drinking, and responsible drinking mediated this association. Discussion: The results suggested that for adolescents who become alcohol users, parental provision of the first drink may reduce subsequent alcohol-related risks compared to introduction to alcohol by friends and other sources. Alcohol-related risks remain significant for adolescents who consume alcohol, independent of who is the provider. Copyright (C) 2012 S. Karger AG, Base
Statistics Of Particle Diffusion Subject To Oscillatory Flow In A Porous Bed
Enhanced diffusion of a suspended particle in a porous medium has been observed when an oscillatory forcing has been imposed. The mechanism of enhancement, termed oscillatory diffusion, occurs when oscillating particles occasionally become temporarily trapped in the pore spaces of the porous medium, and are then later released back into the oscillatory flow. This thesis investigates the oscillatory diffusion process experimentally, stochastically, and analytically. An experimental apparatus, consisting of a packed bed of spheres subjected to an oscillatory flow field, was used to study the dynamics of a single particle. A variety of statistical measures were used and developed to characterize the diffusive process. A stochastic model was developed and showed great agreement with the experimental results. The experimentally validated stochastic model was then compared to an analytic prediction for diffusion coefficient from the continuous-time random walk (CTRW) theory for a range of physical and numerical parameter values. Good agreement between the stochastic model and CTRW theory was observed for certain ranges of parameter values, while differences of predictions are discussed and explained in terms of the assumptions used in each model. Results of the paper are relevant to applications such as nanoparticle penetration into biofilms, drug capsule penetration into human tissue, and microplastic transport within saturated soil
Family coordination in families who have a child with autism spectrum disorder
Little is known about the interactions of families where there is a child with autism spectrum disorder (ASD). The present study applies the Lausanne Trilogue Play (LTP) to explore both its applicability to this population as well as to assess resources and areas of deficit in these families. The sample consisted of 68 families with a child with ASD, and 43 families with a typically developing (TD) child. With respect to the global score for family coordination there were several negative correlations: the more severe the symptoms (based on the child’s ADOS score), the more family coordination was dysfunctional. This correlation was particularly high when parents had to play together with the child. In the parts in which only one of the parents played actively with the child, while the other was simply present, some families did achieve scores in the functional range, despite the child’s symptom severity. The outcomes are discussed in terms of their clinical implications both for assessment and for interventio
Fundamental properties of Fanaroff-Riley II radio galaxies investigated via Monte Carlo simulations
[Abridged] Radio galaxies and quasars are among the largest and most powerful
single objects known and are believed to have had a significant impact on the
evolving Universe and its large scale structure. We explore the intrinsic and
extrinsic properties of the population of FRII objects (kinetic luminosities,
lifetimes, and the central densities of their environments). In particular, the
radio and kinetic luminosity functions of FRIIs are investigated using the
complete, flux limited radio catalogues of 3CRR and Best et al. We construct
multidimensional Monte Carlo simulations using semi-analytical models of FRII
radio source growth to create artificial samples of radio galaxies. Unlike
previous studies, we compare radio luminosity functions found with both the
observed and simulated data to explore the fundamental source parameters. We
allow the source physical properties to co-evolve with redshift, and we find
that all the investigated parameters most likely undergo cosmological
evolution. Strikingly, we find that the break in the kinetic luminosity
function must undergo redshift evolution of at least (1+z)^3. The fundamental
parameters are strongly degenerate, and independent constraints are necessary
to draw more precise conclusions. We use the estimated kinetic luminosity
functions to set constraints on the duty cycles of these powerful radio
sources. A comparison of the duty cycles of powerful FRIIs with those
determined from radiative luminosities of AGN of comparable black hole mass
suggests a transition in behaviour from high to low redshifts, corresponding to
either a drop in the typical black hole mass of powerful FRIIs at low
redshifts, or a transition to a kinetically-dominated, radiatively-inefficient
FRII population.Comment: Accepted to MNRAS. 30 pages, 18 figures, 4 tables + online material
(in appendix): 9 pages, 14 figure
Photometric Catalogue of Quasars and Other Point Sources in the Sloan Digital Sky Survey
We present a catalogue of about 6 million unresolved photometric detections
in the Sloan Digital Sky Survey Seventh Data Release classifying them into
stars, galaxies and quasars. We use a machine learning classifier trained on a
subset of spectroscopically confirmed objects from 14th to 22nd magnitude in
the SDSS {\it i}-band. Our catalogue consists of 2,430,625 quasars, 3,544,036
stars and 63,586 unresolved galaxies from 14th to 24th magnitude in the SDSS
{\it i}-band. Our algorithm recovers 99.96% of spectroscopically confirmed
quasars and 99.51% of stars to i 21.3 in the colour window that we study.
The level of contamination due to data artefacts for objects beyond is
highly uncertain and all mention of completeness and contamination in the paper
are valid only for objects brighter than this magnitude. However, a comparison
of the predicted number of quasars with the theoretical number counts shows
reasonable agreement.Comment: 16 pages, Ref. No. MN-10-2382-MJ.R2, accepted for publication in
MNRAS Main Journal, April 201
A <i>Herschel</i> and BIMA study of the sequential star formation near the W 48A H II region
We present the results of Herschel HOBYS (Herschel imaging survey of OB Young Stellar objects) photometric mapping combined with Berkeley Illinois Maryland Association (BIMA) observations and additional archival data, and perform an in-depth study of the evolutionary phases of the star-forming clumps in W 48A and their surroundings. Age estimates for the compact sources were derived from bolometric luminosities and envelope masses, which were obtained from the dust continuum emission, and agree within an order of magnitude with age estimates from molecular line and radio data. The clumps in W 48A are linearly aligned by age (east-old to west-young): we find a ultra-compact (UC) H II region, a young stellar object (YSO) with class II methanol maser emission, a YSO with a massive outflow and finally the NH2D prestellar cores from Pillai et al. This remarkable positioning reflects the (star) formation history of the region. We find that it is unlikely that the star formation in the W 48A molecular cloud was triggered by the UC H II region and discuss the Aquila supershell expansion as a major influence on the evolution of W 48A. We conclude that the combination of Herschel continuum data with interferometric molecular line and radio continuum data is important to derive trustworthy age estimates and interpret the origin of large-scale structures through kinematic information
- …
