7 research outputs found

    Ripples of Learning: A Middle School Teacher's Application of Content and Pedagogy Learned in the ESSEA Online Earth System Science Course

    Get PDF
    This article provides an overview of an Earth System Science Education Alliance (ESSEA) online professional development course for middle school classroom teachers. The course uses real-world events to develop content understandings of Earth system science, and it models best practices for age appropriate pedagogy. Topics include a brief description of the course itself and of efforts to evaluate its efficacy. The article is also available in printable form, and a video clip is included. Educational levels: Graduate or professional

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Mobile sensing to advance tumor modeling in cancer patients: A conceptual framework

    No full text
    As mobile and wearable devices continue to grow in popularity, there is strong yet unrealized potential to harness people's mobile sensing data to improve our understanding of their cellular and biologically-based diseases. Breakthrough technical innovations in tumor modeling, such as the three dimensional tumor microenvironment system (TMES), allow researchers to study the behavior of tumor cells in a controlled environment that closely mimics the human body. Although patients' health behaviors are known to impact their tumor growth through circulating hormones (cortisol, melatonin), capturing this process is a challenge to rendering realistic tumor models in the TMES or similar tumor modeling systems. The goal of this paper is to propose a conceptual framework that unifies researchers from digital health, data science, oncology, and cellular signaling, in a common cause to improve cancer patients' treatment outcomes through mobile sensing. In support of our framework, existing studies indicate that it is feasible to use people's mobile sensing data to approximate their underlying hormone levels. Further, it was found that when cortisol is cycled through the TMES based on actual patients' cortisol levels, there is a significant increase in pancreatic tumor cell growth compared to when cortisol levels are at normal healthy levels. Taken together, findings from these studies indicate that continuous monitoring of people's hormone levels through mobile sensing may improve experimentation in the TMES, by informing how hormones should be introduced. We hope our framework inspires digital health researchers in the psychosocial sciences to consider how their expertise can be applied to advancing outcomes across levels of inquiry, from behavioral to cellular
    corecore