968 research outputs found

    Influence of the Characteristics of the STM-tip on the Electroluminescence Spectra

    Full text link
    We analyze the influence of the characteristics of the STM-tip (applied voltage, tip radius) on the electroluminescence spectra from an STM-tip-induced quantum dot taking into account the many-body effects. We find that positions of electroluminescence peaks, attributed to the electron-hole recombination in the quantum dot, are very sensitive to the shape and size of the confinement potential as determined by the tip radius and the applied voltage. A critical value of the tip radius is found, at which the luminescence peak positions as a function of the tip radius manifest a transition from decreasing behavior for smaller radii to increasing behavior for larger radii. We find that this critical value of the tip radius is related to the confinement in the lateral and normal direction.Comment: 15 pages, 5 figure

    Experimentally Calibrated Kinetic Monte Carlo Model Reproduces Organic Solar Cell Current-Voltage Curve

    Get PDF
    Kinetic Monte Carlo (KMC) simulations are a powerful tool to study the dynamics of charge carriers in organic photovoltaics. However, the key characteristic of any photovoltaic device, its current-voltage (JJ-VV) curve under solar illumination, has proven challenging to simulate using KMC. The main challenges arise from the presence of injecting contacts and the importance of charge recombination when the internal electric field is low, i.e., close to open-circuit conditions. In this work, an experimentally calibrated KMC model is presented that can fully predict the JJ-VV curve of a disordered organic solar cell. It is shown that it is crucial to make experimentally justified assumptions on the injection barriers, the blend morphology, and the kinetics of the charge transfer state involved in geminate and nongeminate recombination. All of these properties are independently calibrated using charge extraction, electron microscopy, and transient absorption measurements, respectively. Clear evidence is provided that the conclusions drawn from microscopic and transient KMC modeling are indeed relevant for real operating organic solar cell devices.Comment: final version; license update

    Dimensionality of charge transport in organic field-effect transistors

    Get PDF
    Application of a gate bias to an organic field-effect transistor leads to accumulation of charges in the organic semiconductor within a thin region near the gate dielectric. An important question is whether the charge transport in this region can be considered two-dimensional, or whether the possibility of charge motion in the third dimension, perpendicular to the accumulation layer, plays a crucial role. In order to answer this question we have performed Monte Carlo simulations of charge transport in organic field-effect transistor structures with varying thickness of the organic layer, taking into account all effects of energetic disorder and Coulomb interactions. We show that with increasing thickness of the semiconductor layer the source-drain current monotonically increases for weak disorder, whereas for strong disorder the current first increases and then decreases. Similarly, for a fixed layer thickness the mobility may either increase or decrease with increasing gate bias. We explain these results by the enhanced effect of state filling on the current for strong disorder, which competes with the effects of Coulomb interactions and charge motion in the third dimension. Our conclusion is that apart from the situation of a single monolayer, charge transport in an organic semiconductor layer should be considered three-dimensional, even at high gate bias

    Scaling Of The Coulomb Energy Due To Quantum Fluctuations In The Charge Of A Quantum Dot

    Get PDF
    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy scales quadratically with the reflection probability of the barriers. In a second experiment we study the transition from a single to a double-dot which exhibits a scaling behavior linear in the reflection probability. The observed power-laws agree with a recent theory.Comment: 5 pages, uuencoded and compressed postscript file, with figure

    Full capacitance matrix of coupled quantum dot arrays: static and dynamical effects

    Full text link
    We numerically calculated the full capacitance matrices for both one-dimensional (1D) and two-dimensional (2D) quantum-dot arrays. We found it is necessary to use the full capacitance matrix in modeling coupled quantum dot arrays due to weaker screening in these systems in comparison with arrays of normal metal tunnel junctions. The static soliton potential distributions in both 1D and 2D arrays are well approximated by the unscreened (1/r) coulomb potential, instead of the exponential fall-off expected from the often used nearest neighbor approximation. The Coulomb potential approximation also provides a simple expression for the full inverse capacitance matrix of uniform quantum dot arrays. In terms of dynamics, we compare the current-voltage (I-V) characteristics of voltage biased 1D arrays using either the full capacitance matrix or its nearest neighbor approximation. The I-V curves show clear differences and the differences become more pronounced when larger arrays are considered.Comment: 8 pages preprint format, 3 PostScript figure

    Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae)

    Get PDF
    The article is available at: http://www.amjbot.org/cgi/content/full/91/4/558Prevailing ambient temperature during the reproductive phase is one of several important factors for seed and fruit set in different plant species, and its consequences on reproductive success may increase with global warming. The effect of temperature on pollen performance was evaluated in sweet cherry (Prunus avium L.), comparing as pollen donors two cultivars that differ in their adaptation to temperature. ‘Sunburst’ is a cultivar that originated in Canada with a pedigree of cultivars from Northern Europe, while ‘Cristobalina’ is a cultivar native to southeast Spain, adapted to warmer conditions. Temperature effects were tested either in controlled-temperature chambers or in the field in a plastic cage. In both genotypes, an increase in temperature reduced pollen germination, but accelerated pollen tube growth. However, a different genotypic response, which reflected the overall adaptation of the pollen donor, was obtained for pollen tube dynamics, expressed as the census of the microgametophyte population that successfully reached the base of the style. While both cultivars performed similarly at 20°C, the microgametophyte population was reduced at 30°C for Sunburst and at 10°C for Cristobalina. These results indicate a differential genotypic response to temperature during the reproductive phase, which could be important in terms of the time needed for a plant species to adapt to rapid temperature changes.A. H. was supported by an AECI and an SIA-DGA fellowship, and financial support for this work was provided by INIA (project grant RTA 01-103).Peer reviewe

    Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures

    Full text link
    We study the energy structure of two-dimensional holes in p-type single Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field. Photoluminescence measurments with low densities of excitation power reveal rich spectra containing both free and bound-carrier transitions. The experimental results are compared with energies of valence-subband Landau levels calculated using a new numerical procedure and a good agreement is achieved. Additional lines observed in the energy range of free-carrier recombinations are attributed to excitonic transitions. We also consider the role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review

    Licht uit nul-dimensionale objecten

    Get PDF
    No abstract

    Licht uit nul-dimensionale objecten

    Get PDF
    No abstract
    corecore