628 research outputs found

    A decade of solar Type III radio bursts observed by the Nancay Radioheliograph 1998-2008

    Full text link
    We present a statistical survey of almost 10 000 radio Type III bursts observed by the Nancay Radioheliograph from 1998 to 2008, covering nearly a full solar cycle. In particular, sources sizes, positions, and fluxes were examined. We find an east-west asymmetry in source positions which could be attributed to a 6(+/-)1 degree eastward tilt of the magnetic field, that source FWHM sizes s roughly follow a solar-cycle averaged distribution dN/ds = 14 {\nu}^{-3.3} s^{-4} arcmin^{-1} day^{-1}, and that source fluxes closely follow a solar-cycle averaged dN/dS_{\nu} = 0.34 {\nu}^{-2.9} S_{\nu}^{-1.7} sfu^{-1} day^{-1} distribution (when {\nu} is in GHz, s in arcmin, and S_{\nu} in sfu). Fitting a barometric density profile yields a temperature of 0.6 MK, while a solar wind-like (\propto h^{-2}) density profile yields a density of 1.2x10^6 cm^{-3} at an altitude of 1 RS, assuming harmonic emission. Finally, we found that the solar-cycle averaged radiated Type III energy could be similar in magnitude to that radiated by nanoflares via non-thermal bremsstrahlung processes, and we hint at the possibility that escaping electron beams might carry as much energy away from the corona as is introduced into it by accelerated nanoflare electrons.Comment: 22 pages, 18 figure

    Understanding CME and associated shock in the solar corona by merging multi wavelengths observation

    Full text link
    Using multi-wavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a CME which interact during more than 30 min, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration which has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of large Active Region (AR). The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system which becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive types II bursts from distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations allowed: i) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution; ii) to obtain, without introducing an electronic density model, the B-field and the Alfven speed.Comment: 17 pages, 13 figure

    Further constraints on electron acceleration in solar noise storms

    Full text link
    We reexamine the energetics of nonthermal electron acceleration in solar noise storms. A new result is obtained for the minimum nonthermal electron number density required to produce a Langmuir wave population of sufficient intensity to power the noise storm emission. We combine this constraint with the stochastic electron acceleration formalism developed by Subramanian & Becker (2005) to derive a rigorous estimate for the efficiency of the overall noise storm emission process, beginning with nonthermal electron acceleration and culminating in the observed radiation. We also calculate separate efficiencies for the electron acceleration -- Langmuir wave generation stage and the Langmuir wave -- noise storm production stage. In addition, we obtain a new theoretical estimate for the energy density of the Langmuir waves in noise storm continuum sources.Comment: Accepted for publication in Solar Physic

    Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth

    Full text link
    The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13-14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.Comment: Advances in Space Research, Volume 43, Issue 4, p. 600-60

    Do solar decimetric spikes originate in coronal X-ray sources?

    Full text link
    In the standard solar flare scenario, a large number of particles are accelerated in the corona. Nonthermal electrons emit both X-rays and radio waves. Thus, correlated signatures of the acceleration process are predicted at both wavelengths, coinciding either close to the footpoints of a magnetic loop or near the coronal X-ray source. We attempt to study the spatial connection between coronal X-ray emission and decimetric radio spikes to determine the site and geometry of the acceleration process. The positions of radio-spike sources and coronal X-ray sources are determined and analyzed in a well-observed limb event. Radio spikes are identified in observations from the Phoenix-2 spectrometer. Data from the Nan\c{c}ay radioheliograph are used to determine the position of the radio spikes. RHESSI images in soft and hard X-ray wavelengths are used to determine the X-ray flare geometry. Those observations are complemented by images from GOES/SXI. We find that decimetric spikes do not originate from coronal X-ray flare sources contrary to previous expectations. However, the observations suggest a causal link between the coronal X-ray source, related to the major energy release site, and simultaneous activity in the higher corona.Comment: 4 pages, 3 figures, A&AL accepte

    Composition Structure of Interplanetary Coronal Mass Ejections From Multispacecraft Observations, Modeling, and Comparison with Numerical Simulations

    Full text link
    We present an analysis of the ionic composition of iron for two interplanetary coronal mass ejections observed in May 21-23 2007 by the ACE and STEREO spacecraft in the context of the magnetic structure of the ejecta flux rope, sheath region, and surrounding solar wind flow. This analysis is made possible due to recent advances in multispacecraft data interpolation, reconstruction, and visualization as well as results from recent modeling of ionic charge states in MHD simulations of magnetic breakout and flux cancellation CME initiation. We use these advances to interpret specific features of the ICME plasma composition resulting from the magnetic topology and evolution of the CME. We find that in both the data and our MHD simulations, the flux ropes centers are relatively cool, while charge state enhancements surround and trail the flux ropes. The magnetic orientation of the ICMEs are suggestive of magnetic breakout-like reconnection during the eruption process, which could explain the spatial location of the observed iron enhancements just outside the traditional flux rope magnetic signatures and between the two ICMEs. Detailed comparisons between the simulations and data were more complicated, but a sharp increase in high iron charge states in the ACE and STEREO-A data during the second flux rope corresponds well to similar features in the flux cancellation results. We discuss the prospects of this integrated in-situ data analysis and modeling approach to advancing our understanding of the unified CME-to-ICME evolution.Comment: Accepted for submission to The Astrophysical Journa

    Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays

    Full text link
    The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, H-alpha, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.Comment: accepted to Astronomy and Astrophysic
    corecore