585 research outputs found

    Linear porphyrin dimers with fluorenyl arms linked by an ethynyl bridge

    No full text
    International audienceA series of porphyrin monomers bearing fluorenyl donor groups is presented; successively, compounds 10, 11, 12, and 13 bearing three fluorenyl groups. Starting from these building blocks, the synthesis of new porphyrin ethynyl-linked dimers 7 and 8, bearing in totally six peripheral fluorenyl arms is attempted. Dimers are obtained by coupling two porphyrin monomers, using a palladium catalyst, by a rigid bridge. Luminescence studies of new dimers 7 and 8 are presented. We can then compare the detailed luminescence properties of these dimers with former porphyrin monomer possessing four fluorenyl arms TFP (2), which is the precursor model of this work, to porphyrin dendrimers bearing various numbers of fluorenyl arms (3 and 4) and finally to corresponding supramolecular assemblies (5 and 6)

    Mesures des hétérogénéités de déformation du tantale déformé à froid et conséquences sur la recristallisation

    Get PDF
    National audienceLa recristallisation statique du tantale est fortement dépendante de la microstructure engendrée lors de la mise en forme. Des échantillons présentant de faibles taux de déformation ont été obtenus par des essais mécaniques simples de torsion et de compression. Leur observation par microscopie électronique à balayage ainsi que la réalisation de cartographies d'orientation par EBSD, associées à des traitements thermiques in situ, ont permis de montrer qu'un grain avec un facteur de Taylor élevé recristallisait plus vite. Par ailleurs, une méthode « globale » d'évaluation de la densité de dislocations à partir de mesures de dureté a été mise en place. Elle permet d'estimer l'énergie stockée par le matériau lors de sa déformation, énergie qui peut ensuite être reliée au déclenchement de la recristallisation. Cette approche est particulièrement intéressante pour des échantillons déformés sévèrement suivant un chemin de déformation complexe, pour lesquels le calcul des facteurs de Taylor à partir d'une microstructure déformée revêt moins de sens

    Effect of grain orientation on the development of dislocation substructures during cold-deformation of pure Tantalum. Link with static recrystallization and recovery.

    Get PDF
    International audienceRecrystallization and recovery of pure polycrystalline tantalum are highly influenced by the intragranular dislocation structure developed during plastic deformation. A tantalum oligocrystal has been deformed by compression at room temperature. The resulting intragranular dislocation structures have been characterized using a FEG scanning electron microscope coupled with an EBSD system. Based on these experimental observations and crystal plasticity simulations, the development of dislocation substructures is related to the crystallographic stability of grain orientations

    Zooplankton Community Composition in Natural and Artificial Estuarine Passes of Lake Pontchartrain, Louisiana

    Get PDF
    I assessed the composition of zooplankton communities at the three tidal inlets connecting Lake Pontchartrain to Lake Borgne and subsequently to the Gulf of Mexico. The objectives of my research were to better understand the factors contributing to both spatial and temporal differences in zooplankton communities at the three locations. Monthly samplings of the neuston were conducted from September 2009 until April 2011 and then again from September 2012 until May 2013. Sampling consisted of triplicate tows using SeaGear “Bongo” nets. Water quality data along with water turbidity were recorded at each site and during each sampling effort. All specimens collected during the survey were quantified and identified to the lowest taxonomical unit. The results indicated that there were significant differences among the aquatic invertebrate communities composition among the three sites groups averaged across months (ANOSIM, R= 0.162, p = 0.001). The outcomes from this study could have strong implications for fisheries management and will provide a baseline for future research

    The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer

    Get PDF
    Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via ‘porin–cytochrome’ electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer-membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as ‘nanowires’, or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram-negative bacteria

    An experimental study of the carbonation of serpentinite and partially serpentinised peridotites

    Get PDF
    In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of 8-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long) were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70◦C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated) exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,Fe)CO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈0.7 g of CO2 was captured by reacting ≈23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈30 kg CO2 per ton of host rock, equivalent to ≈3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be as effective in an engineered system of CCSM. Wet scCO2 proved to be chemically more aggressive than CO2-saturated brine and its ingress along fractures and grain boundaries resulted in greater host rock dissolution and subsequent carbonate precipitation

    Strontium isotope fractionation of planktic foraminifera and inorganic calcite

    Get PDF
    We have investigated the strontium isotope fractionation (Δ88/86Srcarb–aq) between inorganic calcite and aqueous Sr2+ ions by precipitation experiments at a constant temperature of 25 °C and precipitation rates (R) ranging from 102.3 to 104.2 μmol/m2/h. Strontium isotope ratios were measured using the 87Sr–84Sr double spike technique. It was found that strontium isotope fractionation in these calcites is strongly dependent on the precipitation rate: View the MathML source The measured δ88/86Sr values are significantly correlated with previously measured δ44/40Ca and Sr/Ca values of the same calcite samples: Δ88/86Srcarb–aq=+0.18∗Δ44/40Cacarb–aq-0.01 View the MathML source The slope of 88Sr/86Sr versus 44Ca/40Ca fractionation is 0.18 ± 0.04 and compatible with a kinetic fractionation during dehydration of the strontium and calcium ions, but not with isotope fractionation in a diffusive boundary layer. Using published equilibrium Δ44/40Cacarb–aq and View the MathML source values we estimate the equilibrium isotope fractionation of strontium to be very close to zero (Δ88/86Sreq(carb–aq) = −0.01 ± 0.06‰). This estimate is confirmed by strontium isotope values of natural inorganic calcites that precipitated very slowly in basalts of the ocean crust. The results from the inorganic calcites are used to explain strontium isotope fractionation of planktic foraminifera. Specimens of two warm water species (Globigerinoides ruber and Globigerinoides sacculifer) were picked from the Holocene section of a Caribbean sediment core. We found no significant difference in δ88/86Sr between the two species. In addition, G. ruber specimens from Marine Isotope Stage 2 in the same core show δ88/86Sr values identical to the Holocene specimens. The strontium isotopes of both foraminifera species are strongly fractionated (Δ88/86Srcarb–aq = −0.248 ± 0.005‰) when compared to published data of other major marine calcifiers. Applying the results from the inorganic precipitation experiments we find that the strong foraminiferal strontium isotope fractionation can be explained by calcification in a largely open system at high precipitation rates, comparable in magnitude to rates known from scleractinian reef corals. This interpretation is in good agreement with the kinetic calcification model for planktic foraminifera by Kisakürek et al. (2011), which was based on calcium isotopes and elemental Sr/Ca ratios

    EBSD coupled to SEM in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum

    Get PDF
    International audienceAn in situ annealing stage has been developed in-house and integrated in the chamber of a Scanning Electron Microscope equipped with an Electron BackScattered Diffraction system. Based on the Joule effect, this device can reach the temperature of 1200°C at heating rates up to 100°C/s, avoiding microstructural evolutions during heating. A high-purity tantalum deformed sample has been annealed at variable temperature in the range 750°C-1030°C, and classical mechanisms of microstructural evolutions such as recrystallization and grain coarsening phenomena have been observed. Quantitative measurements of grain growth rates provide an estimate of the mean grain boundary mobility, which is consistent with the value estimated from physical parameters reported for that material. In situ annealing therefore appears to be suited for complementing bulk measurements at relatively high temperatures, in the context of recrystallization and grain growth in such a single-phase material

    Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes

    Get PDF
    Atomic layer deposition (ALD) was utilized to deposit uniform thin films of hematite (α-Fe2O3) on transparent conductive substrates for photocatalytic water oxidation studies. Comparison of the oxidation of water to the oxidation of a fast redox shuttle allowed for new insight in determining the rate limiting processes of water oxidation at hematite electrodes. It was found that an additional overpotential is needed to initiate water oxidation compared to the fast redox shuttle. A combination of electrochemical impedance spectroscopy, photoelectrochemical and electrochemical measurements were employed to determine the cause of the additional overpotential. It was found that photogenerated holes initially oxidize the electrode surface under water oxidation conditions, which is attributed to the first step in water oxidation. A critical number of these surface intermediates need to be generated in order for the subsequent hole-transfer steps to proceed. At higher applied potentials, the behavior of the electrode is virtually identical while oxidizing either water or the fast redox shuttle; the slight discrepancy is attributed to a shift in potential associated with Fermi level pinning by the surface states in the absence of a redox shuttle. A water oxidation mechanism is proposed to interpret these results
    corecore