1,255 research outputs found
Statistical features of the thermal neutron capture cross sections
We discuss the existence of huge thermal neutron capture cross sections in
several nuclei. The values of the cross sections are several orders of
magnitude bigger than expected at these very low energies. We lend support to
the idea that this phenomenon is random in nature and is similar to what we
have learned from the study of parity violation in the actinide region. The
idea of statistical doorways is advanced as a unified concept in the
delineation of large numbers in the nuclear world. The average number of maxima
per unit mass, in the capture cross section is calculated and related
to the underlying cross section correlation function and found to be , where is a characteristic mass
correlation width which designates the degree of remnant coherence in the
system. We trace this coherence to nucleosynthesis which produced the nuclei
whose neutron capture cross sections are considered here.Comment: 7 pages, 6 figures. To appear in Acta Physica Polonica B as a
Contribution to the proceedings of:Jagiellonian Symposium of Fundamental and
Applied Subatomic Physics, June 7- 12, 2015 Krakow, Polan
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
An equations-of-motion approach to quantum mechanics: application to a model phase transition
We present a generalized equations-of-motion method that efficiently
calculates energy spectra and matrix elements for algebraic models. The method
is applied to a 5-dimensional quartic oscillator that exhibits a quantum phase
transition between vibrational and rotational phases. For certain parameters,
10 by 10 matrices give better results than obtained by diagonalising 1000 by
1000 matrices.Comment: 4 pages, 1 figur
Kinetic-inductance-limited reset time of superconducting nanowire photon counters
We investigate the recovery of superconducting NbN-nanowire photon counters
after detection of an optical pulse at a wavelength of 1550 nm, and present a
model that quantitatively accounts for our observations. The reset time is
found to be limited by the large kinetic inductance of these nanowires, which
forces a tradeoff between counting rate and either detection efficiency or
active area. Devices of usable size and high detection efficiency are found to
have reset times orders of magnitude longer than their intrinsic photoresponse
time.Comment: Submitted to Applied Physics Letter
Electrothermal feedback in superconducting nanowire single-photon detectors
We investigate the role of electrothermal feedback in the operation of
superconducting nanowire single-photon detectors (SNSPDs). It is found that the
desired mode of operation for SNSPDs is only achieved if this feedback is
unstable, which happens naturally through the slow electrical response
associated with their relatively large kinetic inductance. If this response is
sped up in an effort to increase the device count rate, the electrothermal
feedback becomes stable and results in an effect known as latching, where the
device is locked in a resistive state and can no longer detect photons. We
present a set of experiments which elucidate this effect, and a simple model
which quantitatively explains the results
Time-Dependent Variational Analysis of Josephson Oscillations in a Two-component Bose-Einstein Condensate
The dynamics of Josephson-like oscillations between two coupled Bose-Einstein
condensates is studied using the time-dependent variational method. We suppose
that the quantum state of the condensates is a gaussian wave-packet which can
translate and perform breathing shape oscillations. Under this hypotheses we
study the influence of these degrees of freedom on the tunneling dynamics by
comparing the full-model with one where these degrees of freedom are ``frozen''
at its equilibrium values. The result of our calculation shows that when the
traps are not displaced the two models agree, whereas when they are, the models
differ considerably, the former being now closer to its linear approximation.Comment: 10 pages, 2 figure
Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors
A photon-number-resolving detector based on a four-element superconducting
nanowire single photon detector is demonstrated to have sub-30-ps resolution in
measuring the arrival time of individual photons. This detector can be used to
characterize the photon statistics of non-pulsed light sources and to mitigate
dead-time effects in high-speed photon counting applications. Furthermore, a
25% system detection efficiency at 1550 nm was demonstrated, making the
detector useful for both low-flux source characterization and high-speed
photon-counting and quantum communication applications. The design, fabrication
and testing of this detector are described, and a comparison between the
measured and theoretical performance is presented.Comment: 13 pages, 5 figure
- …
